• 제목/요약/키워드: Frozen rotor method

검색결과 17건 처리시간 0.025초

터빈 블레이드 형상에 따른 의료용 에어터빈 핸드피스의 성능 특성에 관한 수치적 연구 (Numerical Study on the Effect of Turbine Blade Shape on Performance Characteristics of a Dental Air Turbine Handpiece)

  • 이정호;김귀순
    • 한국추진공학회지
    • /
    • 제13권1호
    • /
    • pp.34-42
    • /
    • 2009
  • 의료용 고속 에어터빈 핸드피스는 치아 절삭 도구로써 지난 50년 동안 치의학분야에서 사용되어왔으나, 그것에 대한 성능 연구가 많이 없었다. 그래서 수치해석을 이용하여 핸드피스 터빈 형상의 성능 특성을 본 논문에서 연구하였다. 정상상태 방법 중 하나인 프로즌 로터 방식을 이용하여 터빈 블레이드의 위치에 따라 5가지의 경우에서 계산하였다. 형상과 반사각에 따른 터빈 블레이드의 특성을 분석하였다. 계산 결과에 따르면, 터빈 블레이드의 반사각이 증가할 때 토크가 증가하였다.

A numerical simulation of flow field in a wind farm on complex terrain

  • Lee, Myungsung;Lee, Seung Ho;Hur, Nahmkeon;Choi, Chang-Koon
    • Wind and Structures
    • /
    • 제13권4호
    • /
    • pp.375-383
    • /
    • 2010
  • A three-dimensional flow simulation was performed to investigate the wind flow around wind-power generation facilities on mountainous area of complex terrain. A digital map of eastern mountainous area of Korea including a wind farm was used to model actual complex terrain. Rotating wind turbines in the wind farm were also modeled in the computational domain with detailed geometry of blade by using the frozen rotor method. Wind direction and speed to be used as a boundary condition were taken from local meteorological reports. The numerical results showed not only details of flow distribution in the wind farm but also the variation in the performance of the wind turbines due to the installed location of the turbines on complex terrain. The wake effect of the upstream turbine on the performance of the downstream one was also examined. The methodology presented in this study may be used in selecting future wind farm site and wind turbine locations in the selected site for possible maximum power generation.

초전도 저널베어링의 기계적 특성에 대한 연구 (Identification of Mechanical Characteristics of Superconductor proceeding Bearing)

  • 윤희중;한영희;한상철;정년호;김정훈;성태현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2163-2166
    • /
    • 2004
  • For designing high Tc superconductor proceeding bearing(HTSJB) which is used on a flywheel energy storage system which requests the free of the bearing loss caused by the friction, it is necessary to understand the basic characteristics of the classical superconductor proceeding bearing because the mechanical characteristics of the HTSJB are identified by the magnetic relationships between the permanent magnet(PM) and the high Tc superconductor(HTS). In this paper, using the method, frozen image model, the force problems between the PM and the HTS were solved and then the dynamic characteristics of the rotor inside of the HTSJB can be expected in advance by using the basic characteristics between the PM and the HTS. The coefficient of friction of the HTSJB was measured in the vacuum environment. From the results, the mechanical characteristics of HTSJB can be identified using the numerical models.

  • PDF

지형에 따른 발전기 배치가 풍력 발전 성능에 미치는 영향에 관한 수치해석 연구 (A Numerical Study on the Effect of Mountainous Terrain and Turbine Arrangement on the Performance of Wind Power Generation)

  • 이명성;이승호;허남건
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.901-906
    • /
    • 2010
  • 복잡한 지형에 위치한 풍력발전소의 유동장을 분석하기 위해 3차원 유동해석이 수행되었다. 본 논문의 목적은 복잡한 지형과 풍력발전기의 배치가 풍력발전소의 성능에 미치는 영향을 연구하는 것이다. 자세한 블레이드 형상을 고려한 총 49대의 풍력발전기가 계산 도메인에 포함되었다. 풍력발전기의 회전운동을 고려하기 위해 고정회전자 기법이 사용되었고, 블레이드에 작용하는 토크를 계산함으로써 풍력발전기의 성능을 평가하였다. 수치해석 결과를 통하여 풍력발전소 전체의 자세한 유동장과 지형적 영향으로 풍속이 감소되는 국부적인 영역을 예측하였고, 상류의 발전기에서 발생하는 후류가 하류에 위치한 발전기의 성능에 미치는 영향도 분석되었다. 본 연구의 해석기법은 추후 건설되는 풍력발전소의 부지와 풍력발전기의 최적 위치를 선정하는 데 사용될 수 있을 것으로 사료된다.

영구자석 사용 효율 향상을 위한 IPM 전동기의 최적 토폴로지 (Topology Optimal Interior Permanent Magnet Machine to Improve the Utilization Ratio of Permanent Magnet)

  • 도욱;장전해;주립훈;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.862-863
    • /
    • 2015
  • This paper presents an improved estimation procedure for the contribution to no-load flux linkage created by the permanent magnet (PM) in interior permanent magnet synchronous machines. In the proposed method, the saturation effect in stator and rotor cores are taken into account by utilizing the frozen permeability method (FPM). This improved procedure can evaluate the contribution for each local element in the PM to the no-load flux linkage. According to the analysis results, an effective PM topology optimal design can be carried out to achieve high utilization ratio of PM in the machine. In order to determine the threshold of the low contribution of PM for removing, one multi-objective optimization model is proposed. Based on the optimal threshold, the final optimal topology design of PM can be achieved.

  • PDF

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

배플 형상에 따른 교반기 내부 고체입자 분포의 비정상상태 해석 (TRANSIENT SIMULATION OF SOLID PARTICLE DISTRIBUTION WITH VARIOUS DESIGN PARAMETERS OF THE BAFFLE IN A STIRRED TANK)

  • 김치겸;이승재;원찬식;허남건
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.1-6
    • /
    • 2009
  • In the present study, numerical simulations were performed in a stirred solid/liquid system by using Eulerian multi-phase model. The transient flow field of liquid and distribution of solid particles were predicted in the stirred tank with pitched paddle impeller and baffles. The Frozen rotor method is adopted to consider the rotating motion of the impeller. The effects of number and width of baffles on the mixing time and the quality of solid suspension in the stirred tank are presented numerically. The result shows that the mixing time decreases as the width and number of baffles increase. The present numerical methodology can be applied to optimizing mixing condition of industrial mixer.