• Title/Summary/Keyword: Frost properties

Search Result 108, Processing Time 0.029 seconds

Frost Heave Force of Ground and Countermeasure for Damage of Structures (지반의 동상력과 구조물의 피해대책)

  • Rui, Da-Hu;Teruyuki, Suzuki;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.43-51
    • /
    • 2007
  • Frost action may cause extensive damage to building, structures, roads, railways and utility lines in seasonal frost. The research about frost heave of natural ground has been considerably performed. In late years various structures have become complicated with the development of social infrastructure maintenance. Therefore countermeasure to frost heave becomes a matter of great importance from a new viewpoint. This study was aimed at catching natural ground frost heaving force quantitatively. Frost heaving forces on circular steel plates which were set on ground surface were measured in field test. The frost heaving forces arise at freezing front propagates to the structures through frozen soil layer. Besides, a full scale model of multi-anchored retaining wall was installed in field, and the freezing lines, frost heave pressure to act on a wall block, and so on were measured. Finally, the position and shape of frost line were estimated by using numerical simulation and a method to determine replacement range was suggested with soil properties and weather data.

A Study of the Physical Properties of Sungnyemun Tile (숭례문 기와의 물리적 특성 연구)

  • Chung, Kwang-Yong
    • Journal of architectural history
    • /
    • v.20 no.1
    • /
    • pp.23-39
    • /
    • 2011
  • The Sungnyemun roofing tiles were twice disassembled for maintenance work, in 1963 and 1997, and modern tiles were applied in 1997. However, besides differing in visual appearance, the modern tiles had distinctly different physical properties. A study has been carried out on 22 different tiles, including original Sungnyemun tiles, modern tiles applied during maintenance, traditional tiles made by tile-makers, and others, to examine their physical properties, such as bending strength, frost resistance, absorption, whole-rock magnetic susceptibility, chromaticity, differential thermal analysis, and other characteristics. Since the method of making modern tiles involves compressing clay in a vacuum, modern tiles showed relatively greater bending strength and specific gravity, while Sungnyemun tiles and those made by tile-makers, in comparison, demonstrated less bending strength and specific gravity owing to their production method of 'treading,' in which clay is mixed by having someone tread upon it repeatedly. Over time, the absorption rate of the original tile used for Sungyemun gradually decreased from 21% to 14.7%; traditional tiles from tile-makers showed absorption rates of 17%, while the absorption rate of modern tiles was just 1%, which is significantly low. As for frost resistance, Sungnyemun tiles and traditional tiles from tile-makers showed cracking and exfoliation after being subjected to testing 4 or 5 times, while slight cracking was seen on the surface for modern tiles after 1ngy, or 3 times. In other words, no significant difference from influence by frost was found. According to the results of differential thermal analysis, the plastic temperature was shown to have been no less than 1, $on^{\circ}C$ for all types of tile, and cristobalite was measuredthrough XRD analysis from a Sungnyemun female tile applied during maintenance in 1963, which appeared to have been plasticized at between $1,200^{\circ}C{\sim}1,300^{\circ}C$. Based on these research results on the physical properties of tiles from the Sungnyemun roof, a fundamental production method for tiles to be applied in the restoration of Sungnyemun has been identified.

Freezing Depth Analysis Considering Environmental Factors and Physical Properties of Pavement Materials (환경변수 및 도로재료의 특성을 고려한 동결깊이 분석)

  • Kim, Suk Myung;Rhee, Suk Keun;Kim, Suk Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.55-61
    • /
    • 2009
  • In this research freezing depth analyses were performed for the recent 9 project field sites using FrostAM which is a freezing analysis model developed recently within the country and a model based on regional environmental factors and physical properties of pavement materials. The environmental factors needed for freezing depth analysis were obtained from the meteorological agency website. And there were laboratory tests and analyses using a measuring device for properties of unsaturated soil for the field site samples across country to obtain hydrographical properties among physical properties. The freezing depths analyzed by FrostAM were deeper in the range of 14cm~44cm than those based on freezing index. It is considered that the freezing depths based on freezing index were overestimated. And there are considerable differences among the freezing depths based on freezing index which were designed by different designers.

Numerical Analysis of Frost Depth behind the Lining of Road Tunnel in Gangwon Province (수치해석을 통한 강원지역 도로터널 라이닝 배면지반의 동결깊이 분석)

  • Son, Hee-Su;Jun, Kyoung-Jea;Yune, Chan-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.15-23
    • /
    • 2017
  • Gangwon Province, located in the northeastern part of South Korea, is the coldest area in South Korea with 90% of the total area as mountainous. Therefore, tunnel damage has been reported continuously in winter. But there has been lack of researches on frost heave occurring behind tunnel lining. In this study, numerical analysis was conducted to investigate the frost depth in road tunnel constructed in Gangwon province. Based on the database on road tunnel and weather in Gangwon province, a standard tunnel shape and geotechnical properties of ground was determined. And then thermal analysis for the frost depth according to the temperature change and ground conditions were conducted. Analysis result showed that the sensitivity to frost heave of metamorphic rock and sedimentary rock is higher than sand. Lower initial ground temperature leads to deeper frost depth and consequently increases frost damage. In addition, lining thickness, specific heat capacity, and thermal conductivity also affect greatly on the variation of frost depth.

A Study on the Analysis of Freezing Soil by Frost Groups and Frost Depth in Korea (우리나라 동결토의 토군별 분석과 동결심도에 관한 연구)

  • 정철호
    • Geotechnical Engineering
    • /
    • v.5 no.4
    • /
    • pp.5-16
    • /
    • 1989
  • This paper statistically analyses the freezing soil by frost group and frost depth in Korea with data from soil testing in the Korea National Housing Corporation, the climate data provided by the Central Weather Office and the data on the frost depth from the National Construction Laboratory Institute. In this paper, freezing variable are analysed such as percentage finer than 0.02 m by weight, plasticity index, freezing index, water contents of soil and frost depth etc‥‥ The result of the analysis is as follows. 1) The frost depth of Korea depends on the properties of soil rather thank the characte fistic of area. 2) The distribution map of design freezing index in 57 cities is drawn up with the maxi- mum freezing index, during past 14 years, calculated by the average of the air temperature observed four times(03 : 00.09 00, 15 : 00, 21 : 00) a day. 3) By correcting the OLS line estimated from the relationship between freezing index and frost depth, a method of utlizing the line with the upper confidence limit of 99.9% int-distribution as predicted maximum frost depth is newly introduced.

  • PDF

Evaluation Method of Frost Heave for Unsaturated Soils (불포화 지반의 동결 팽창율 예측을 위한 기법 연구)

  • Kang, Jae-Mo;Kim, YoungSeok;Lee, Jangguen
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • Frost heave occurs when ground temperature decreases under $0^{\circ}C$ and soil volume expands, which causes roadway and buried pipe line failure due to differential heaving. There are several models to predict volumetric strain caused by frost heave, but they requires expertises who have professional background and experience related to numerical analysis. This study presents an evaluation method to predict volumetric strain caused by frost heave with fundamental physical properties of soils. The evaluation method is assessed with experimental results.

Experimental Investigation of Frost Heaving Susceptibility with Soils from Terra Nova Bay in Eastern Antarctica (동남극 테라노바만 흙 시료의 동상특성에 관한 실험적 연구)

  • Hong, Seungseo;Park, Junghee;Lee, Jongsub;Lee, Jangguen;Kang, Jaemo;Kim, Youngseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.5-16
    • /
    • 2012
  • The second scientific antarctic station of South Korea is under construction at Terra Nova Bay located in eastern Antarctica. Ground condition in the Antarctica is frozen in general, but there are seasonal frozen grounds with active layers sporadically. When the active layer is frozen, frost heaving occurs that might cause the differential movement of frozen ground and the failure of structures. Therefore, it is necessary to determine the frost heaving susceptibility of soils at Terra Nova Bay before starting antarctic station construction. This study presents experimental investigation of the frost heaving susceptibility of soil samples with variation of particle sizes and unfrozen water contents. The soil samples were taken from five different locations at Terra Nova Bay and physical properties, unfrozen water content, and frost heaving tests were performed. For the frost heaving tests, soil specimens were frozen with constant freezing temperatures at the top and with drainage at the bottom in order to stimulate the frost heaving. The frost heaving tests provide volume expansion, volumetric strain, and heaving rate which can be used to analyze the relationship between the frost heaving vs. particle size and the frost heaving vs. unfrozen water content. Experimental results show that the more the fine contents exist in soils, the more frost heaving occurs. In addition, the frost heaving depends on unfrozen water content. Experimental data can be used to evaluate the frost heaving susceptibility of soils at the future construction site in the Antarctica.

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.

Effect of rubber particles on properties and frost resistance of self-compacting concrete

  • Miao Liu;Jianhua Xiao;En Yang;Lijuan Su
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.269-276
    • /
    • 2023
  • In order to study the effect of rubber particle size and admixture on the frost resistance of self-compacting concrete, three self-compacting concrete specimens with equal volume replacement of fine aggregate by rubber particles of different particle sizes were prepared, while conventional self-compacting concrete was made as a comparison specimen. The degradation law of rubber aggregate self-compacted concrete under freeze-thaw cycles was investigated by fast-freezing method test. The results show that the rubber aggregate has some influence on the mechanical properties and freeze-thaw durability of the self-compacting concrete. With the increase of rubber aggregate, the compressive strength of self-compacting concrete gradually decreases, and the smaller the rubber aggregate particle size is, the smaller the effect on the compressive strength of the matrix; rubber aggregate can improve the frost resistance of self-compacting concrete, and the smaller the rubber particle size is, the more obvious the effect on the improvement of the frost resistance of the matrix under the same dosage. Through the research of this paper, it is recommended to use 60~80 purpose rubber aggregate and the substitution rate of 10% is chosen as the best effect.

An Experimental Study on the Early Frost Resistance Properties of High-Strength Concrete in Winter Concreting (동절기 고강도콘크리트의 시공에 있어서 초기동해 방지에 관한 실험적 연구)

  • 권영진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.76-81
    • /
    • 2001
  • Recently, the structure is higher and larger, so that the application of high-strength concrete is increased, And as the development of construction skills, it is possible to place during the winter. Concrete work during winter is indispensible to shorten time of completion and cut costs. When concrete work during winter is placed, it has anxiety that concrete freeze at low temperature. As repetition of concrete's freezing cause reduction of durability, it is necessary for mixing to pay attention to air content and W/C ratios. Accordingly, in this study, we estimate the frost resistance by air content and W/C ratios, and development of strength after early-frost damage in the high-strength concrete during the cold weather. In this study, it could be confirmed that factors which were air content, W/C ratios and early curing period, affected on the frost resistance.

  • PDF