• 제목/요약/키워드: Frontal offset

검색결과 32건 처리시간 0.017초

Spring-Mass 모델을 이용한 차대차 부분정면충돌 모델링 (Car-to-Car Offset Frontal Impact Modeling using Spring-Mass Model)

  • 임재문;이광원
    • 자동차안전학회지
    • /
    • 제8권2호
    • /
    • pp.11-16
    • /
    • 2016
  • The objective of this study was to construct the spring-mass models for the car-to-car offset frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from the offset frontal crash test. The spring-mass model of the passenger car could effectively approximate the crash characteristics for the offset frontal barrier impact and the car-to-car offset frontal impact scenarios.

상호안전성을 고려한 차대차 정면 충돌 안전성 선행 연구 (A Study on Car-to-car Frontal Impact Considering the Vehicle Compatibility)

  • 이창민;신장호;김현우;박건호;박영준
    • 자동차안전학회지
    • /
    • 제9권1호
    • /
    • pp.13-18
    • /
    • 2017
  • In recent years, NCAP regulations of many countries have induced automaker to improve the vehicle crashworthiness. But, the current NCAP regulations don't cover all types of traffic accidents. And rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility. So, many countries have tried to develop the new crash test mode and update the present crash test mode. Especially, Euro NCAP has been developing a new impact protocol of the car-to-car frontal offset impact including the crash compatibility assessment. There are plans to introduce this new protocol in 2020, and it will be replaced the current Euro NCAP frontal offset impact. The test dummy in the front seats of this new test mode will be changed from 50% Hybrid-III male to 50% THOR male. This paper will address the vehicle responses, the occupant responses and the vehicle compatibility performance from a full vehicle crash test using the new car-to-car frontal offset test protocol of Euro NCAP.

정면 옵? 충돌해석을 위한 LMS 모델 개발 (Developing the LMS Model for Frontal Offset Impact Analysis)

  • 한병기;정훈;김지홍
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.211-216
    • /
    • 2003
  • A frontal offset impact model Oat can simulate the 40% offset frontal impact into deformable barrier regulated in EU Directive 96/79 EC has been developed. Engine rotation effects are also considered in the model. Distributed 11 masses and characteristics of 23 nonlinear springs comprising the model are determined based on both the stick-model analysis under the general specification of car and the dynamic characteristics of car structure. It is demonstrated that simulated acceleration-time curve for passenger part is in good agreement with test data obtained by NHTSA.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

차 대 차 부분 정면충돌 시험의 MPDB compatibility 평가에 대한 연구 (A Study on MPDB Compatibility Assessment of Car to Car Offset Frontal Impact Test)

  • 선홍열;윤일성;김재수;이만수
    • 자동차안전학회지
    • /
    • 제11권4호
    • /
    • pp.6-15
    • /
    • 2019
  • Since introducing the offset frontal impact test in EuroNCAP in 1997, the vehicle has been constantly changing according to its usage and purpose. As of 2019, many vehicles have been released to the public, which has led to a large structural mass difference between small, medium and large vehicles. Also, the geometry of the front of the vehicle is completely different for each vehicle and tends not to be perfectly aligned at frontal collisions. The difference in mass of each of these vehicles and less performing structures for offset crashes have led to dramatically worse outcome in a car to car offset frontal impact tests. Even though a decade later passenger cars have become much safer due to consumer test programs and regulatory requirements, the aggressiveness and compatibility that can cause damage to the opponent car in the event of car to car collision is not considered in the above-mentioned section, and therefore much improvement is needed. After many years of study to solve this problem, EuroNCAP has developed a new mode MPDB offset front test that considers the aggressiveness and compatibility that can affect the opponent cars that have collided. This paper introduces the development process of aggressiveness and compatibility evaluation method of MPDB in EuroNCAP which will be implemented from 2020. Several impact tests have been conducted at different test conditions to rate the vehicle structure performance only focused on aggressiveness and compatibility of MPDB.

정면충돌 시험방법에 따른 어린이 탑승객 충돌안전성 비교연구 (A Study on the Comparison for the Child Occupant Safety from Frontal Crash Test Protocol)

  • 김시우
    • 자동차안전학회지
    • /
    • 제8권3호
    • /
    • pp.33-38
    • /
    • 2016
  • Recently, development in vehicle safety could increase interest in children's safety in vehicle collisions. But the research of children safety in vehicle collisions is not being conducted as many as that of adult's. Especially the study for the vehicle crash was not much. This study focused on the comparison of child safety between test protocols to evaluate children's safety in crash test. Injuries of Q6 and Q10 dummy were evaluated using FFRB (Full frontal rigid barrier) test and 40% ODB (Offset deformable barrier) test with one model vehicle. Even though the limit number of test, the tendency of injury criteria of Q6 and Q10 dummy between the test protocols was not conformed but injury criteria of Q6 and Q10 were not same between FFRB and 40% ODB.

신 정면 충돌 시험의 시뮬레이션 비교 분석 (Simulation Analysis and Comparison of New Frontal Impact Tests)

  • 정경진;윤영한;박지양;김동섭;오명진;곽영찬;손창기;신재곤;이은덕;권해붕
    • 자동차안전학회지
    • /
    • 제9권2호
    • /
    • pp.20-25
    • /
    • 2017
  • KNCAP is a program to evaluate the automobile safety, providing consumer vehicle safety assessment results. The safety evaluation tests are Frontal Impact, Offset Frontal Crash, Side Crash, Side Pole Crash, Rear Impact. This is the study of the offset frontal impact safety evaluation. Currently, IIHS is performing a small overlap test. NHTSA plans to implement the oblique moving deformable barrier test. Euro-NCAP plans to implement a mobile frontal impact test. Simulation is used to compare occupant behavior and injury. We have investigated whether the introduction of the test at KNCAP is necessary. The dummy model used in the simulation was the 50th percentile male Hybrid III dummy.

레이져 스캐너를 이용한 전방 충돌 예측 알고리즘 개발 (Development of a Frontal Collision Detection Algorithm Using Laser Scanners)

  • 이동휘;한광진;조상민;김용선;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.113-118
    • /
    • 2012
  • Collision detection plays a key role in collision mitigation system. The malfunction of the collision mitigation system can result in another dangerous situation or unexpected feeling to driver and passenger. To prevent this situation, the collision time, offset, and collision decision should be determined from the appropriate collision detection algorithm. This study focuses on a method to determine the time to collision (TTC) and frontal offset (FO) between the ego vehicle and the target object. The path prediction method using the ego vehicle information is proposed to improve the accuracy of TTC and FO. The path prediction method utilizes the ego vehicle motion data for better prediction performance. The proposed algorithm is developed based on laser scanner. The performance of the proposed detection algorithm is validated in simulations and experiments.

충돌유형별 더미 착좌자세별 상해치 변화 연구 (A Study of Occupant Injury of Various Sitting Postures in Frontal Crash Modes)

  • 소영명;김호;배준석
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.48-57
    • /
    • 2023
  • With the advance of autonomous vehicle technology various sitting posture is possible like relax position (inclined seating posture). Parametric study was done with MADYMO, a mutibody dynamics solver, to investigate the effect of sitting posture in different frontal crash modes, full frontal, 40% offset, and angled rigid barrier crash as well as various impact speeds. Hybrid III 50th male and 5th female dummies were used to figure out the difference induced by occupant weight and dimension. Restraint system parameters complying to current safety protocols like NCAP are studied if they still work effectively in relax position which is feasible with autonomous vehicles.