• Title/Summary/Keyword: Frontal crash simulation

Search Result 36, Processing Time 0.026 seconds

Finite Element Analysis on the Energy Absorption Characteristics of Hybrid Structure (충격흡수용 복합부재의 에너지 흡수특성에 관한 유한요소해석)

  • 신현우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.101-107
    • /
    • 2004
  • Recently the objective of vehicle design was focused on the crash safety and the energy saving. For the energy saving vehicle structures must be light weight, but for the crash safety some energy absorbing elements must be added. In this paper hybrid structure which consists of a steel and a FRP was studied on the energy absorption characteristics under the impact load by finite element method. Test results of the other researchers were compared with that of computer simulation on this simple hybrid structure. Side rail of vehicle front structure was replaced with hybrid materials for the application of the vehicle structure. 35mph frontal crash simulation was performed with hybrid structure and with conventional steel structure. By the adoption of hybrid structure, the improvement of energy absorption characteristics and reduction of weight was observed under the frontal crash simulation.

Development of a Finite Element Model for Frontal Crash Analysis of a Large-Sized Truck (대형트럭의 정면 충돌 특성해석을 위한 유한요소모델의 개발)

  • Kim, Hak-Duck;Song, Ju-Hyun;Oh, Chae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.489-494
    • /
    • 2001
  • This paper develops a finite element model for frontal crash analysis of a large-sized truck. It is composed of 220 parts, 70,041 nodes and 69,073 elements. This paper explains only major parts' models in detail such as frame, cab, floor, and bumper which affect on crash analysis a lot. In order to prevent penetration not only at a part itself but also between parts, all contact areas are defined using type-36, self-impact type. The developed model's reliability is validated by comparing simulation and crash test results. The results used for model validation are vehicle pulses at B-pillar, and frame and deformation of frame and cab. The frontal crash simulation is performed with the same conditions as crash test. And, it is performed using PAM-CRASH installed in super-computer SP2. The developed model whose reliability is verified may be used as a base to develop a finite element model for occupant behavior and injury coefficient analysis.

  • PDF

Construction of Driver's Injury Risk Prediction in Different Car Type by Using Sled Model Simulation at Frontal Crash (슬레드 모델 시뮬레이션을 이용한 자동차 정면충돌에서 차량 형태별 운전자 상해 판정식 제작)

  • Moon, Jun Hee;Choi, Hyung Yun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.136-144
    • /
    • 2013
  • An extensive real world in-depth crash accident data is needed to make a precise occupant injury risk prediction at crash accidents which might be a critical information from the scene of the accident in ACNS(Automatic Crash Notification System). However it is rather unfortunate that there is no such a domestic database unlike other leading countries. Therefore we propose a numerical method, i.e., crash simulation using a sled model to make a virtual database that can substitute car crash database in real world. The proposing crash injury risk prediction is validated against a limited domestic crash accident data.

FE simulation for the Reconstruction of Deceleration Profile in Steel Bar Breaking System (강철봉 제동 시스템에서의 감속파형 재현을 위한 유한 요소 해석)

  • Lee, J.K.;Suk, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.213-216
    • /
    • 2008
  • Sled test id widely used to evaluate the performance of occupant's safety system in frontal crash environment without having to conduct a full-scale crash test. Steel bar breaking system is used to generate deceleration profile which is experienced by passengers in frontal crash. In this study, deformation analyses of steel bars were conducted using a commercial FE code. Several guidelines were proposed to improve the accuracy of simulation.

  • PDF

Simulation Analysis and Comparison of New Frontal Impact Tests (신 정면 충돌 시험의 시뮬레이션 비교 분석)

  • Jung, Kyungjin;Youn, Younghan;Park, Jiyang;Kim, Dongseup;Oh, Myoungjin;Kwak, Youngchan;Son, Changki;Shin, Jaekon;Lee, Eundok;Kwon, Hae Boung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.20-25
    • /
    • 2017
  • KNCAP is a program to evaluate the automobile safety, providing consumer vehicle safety assessment results. The safety evaluation tests are Frontal Impact, Offset Frontal Crash, Side Crash, Side Pole Crash, Rear Impact. This is the study of the offset frontal impact safety evaluation. Currently, IIHS is performing a small overlap test. NHTSA plans to implement the oblique moving deformable barrier test. Euro-NCAP plans to implement a mobile frontal impact test. Simulation is used to compare occupant behavior and injury. We have investigated whether the introduction of the test at KNCAP is necessary. The dummy model used in the simulation was the 50th percentile male Hybrid III dummy.

Development of a Finite Element Model for Frontal Crash Analysis of a Mid-Size Truck (중형 트럭의 정면 충돌 특성해석을 위한 유한요소 모델의 개발)

  • 홍창섭;오재윤;이대창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • This paper develops a finite element model for studying the crashworthiness analysis of a mid-size truck. A simulation for a truck frontal crash to a rigid barrier using the model is performed with PAM-CRASH installed in super computer SP2. Full vehicle model is composed of 86467 shell elements, 165 beam elements and 98 bar elements, and 86769 nodes. The model uses four material model such as elastic, elastic-plastic(steel), rigid and elastic-plastic(rubber) material model which are in PAM-CRASH. Frame and suspension system are modeled with 28774 shell elements and 31412 nodes. Cab is modeled with 34680 shell elements and 57 beam elements, and 36254 nodes. Bumper is modeled with 2262 shell elements, and 2508 nodes. Axle, steering shaft, etc are modeled using beam or bar elements. Mounting parts are modeled using rigid bodies. Bodies are interconnected using nodal constrains or joint options. To verify the developed model, frontal crash test with 30mph velocity to a rigid barrier is carried out. In the crash test, vehicle pulse at lower part of b-pillar is measured, and deformed shapes of frame and driver seat area are photographed. Those measured vehicle pulse and photographed pictures are compared those from the simulation to verify the developed finite element model.

  • PDF

Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus (소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발)

  • 김학덕;송주현;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

Crashworthiness Improvement of Idealized Vehicle's Side Rails (이상화된 자동차 측면부재의 충돌특성 향상에 관한 연구)

  • 김흥수;박신희;강신유;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.189-197
    • /
    • 1996
  • In this study, the crashworthiness analysis was carried out for the hat type section side rails which had an important role of absorbing the impact energy during frontal crash. In case of a tapered hat type section model, numerical simulation models and test models were designed with varing design variables; welding pitch, taper angle, initiator shape, initiator location. The effect of variation of the design variables was investigated by quasi-static and dynamic test and numerical simulation.

  • PDF

Occupant Safety Analysis for Wheelchair Bus Development (휠체어 탑승 버스의 승객안전도 분석)

  • Kim, Kyungjin;Shin, Jaeho;Yong, Boojoong;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.

The Safety Assessment of Wheelchair Occupants in Road Passenger Vehicles with the Frontal Crash: a Computer Simulation (시뮬레이션 기법을 이용한 차량내 전동휠체어 탑승자의 전방 충돌시 안전에 관한 연구)

  • Lee, Young-Shin;Lee, Ki-Du;Lim, Hyun Kyoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1518-1526
    • /
    • 2005
  • With increasing need of transportation services for people with disabilities and the aged, wheelchairs are used as their assistive devices to participate in daily and recreational activities and as seats of motor vehicle. However, as wheelchairs are primarily designed fer mobility assistive devices, not for vehicle seats, wheelchair users may experience serious injury when they meet car crashes. To date, neither engineering guidance for a wheelchair mounting system on the vehicle floor nor safety assessment analysis by a car crash has been studied for the domestic users. In this paper, in accordance with the ANSVRESNA WC-19, a fixed vehicle mounted wheelchair occupant restraint system (FWORS), wheelchair integrated restraint system (WIRS), and wheelchair integrated x-bend restraint system (WIXRS) subjected to frontal impact (20 g, 48 U) were analyzed using compute. simulations for domestic users. We present surrogate wheelchair occupant safety by head injury criteria (HIC), motion criteria (MC), and combined injury criteria (CIC).