• 제목/요약/키워드: Frontal crash

검색결과 112건 처리시간 0.021초

경량 휠체어 탑승자의 차량 전방충돌시 안전성 평가 (A Safety Assessment on Light Weight Wheelchair Occupant in Frontal Crash)

  • 김성민;김성재;강태건
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권1호
    • /
    • pp.15-21
    • /
    • 2003
  • 본 연구에서는 경량휠체어 탑승자의 차량 전방충돌시 안전성 평가를 위하여 동적 슬래드 충격실험을 하였다. 실험은 총 6회 시행하였으며 충격속도는 20g/48 $\pm$2km/h 였고, Hybrid III 50%ile 성인남자 인체모형을 사용하여 두부손상기준(Head Injury Criteria), 목의 굴전모멘트, 축 인장력, 전단력, 흉부 가속도. 두부, 휠체어, 무릎의 전방 쏠림량을 측정하였으며 미국자동차학회 규격인 SAE J2249에서 제안한 동작기준 (Motion Criteria)과 미국 제너럴모터스사의 자체기준(GM-IARV)인 복합상해기준(Combined Injury Criteria)을 이용하여 안전성평가를 하였다. 실험결과는 경량 휠체어 탑승자의 전방 충돌 시 최대 상해치를 100%로 봤을 때 휠체어와 탑승자 거동의 위험도지수 MC는 52%, 탑승자의 상체 위험도지수 CIC는 60.1% 였다.

충돌에너지 흡수효율 최대화를 위한 자동차 사이드 멤버 최적 설계에 관한 연구 (A Study on the Optimum Design of the Automotive Side Member to Maximize the Crash Energy Absorption Efficiency)

  • 이정환;정낙탁;서명원
    • 한국정밀공학회지
    • /
    • 제30권11호
    • /
    • pp.1179-1185
    • /
    • 2013
  • In this study, the design optimization of the automotive side member is performed to maximize the crash energy absorption efficiency per unit weight. Design parameters which seriously influence on the frontal crash performance are selected through the sensitivity analysis using the Plackett-Burman design method. And also the design variables, which are determined from the sensitivity analysis, are optimized by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using micro-genetic algorithm. The proposed optimization technique shows that the automotive side member structure can be designed considering the frontal crash performance.

버스 실사고 데이터 구축을 통한 대표 버스충돌유형 분석 연구 (A Study on the Analysis of Representative Bus Crash Types through Establishment of Bus In-depth Accident Data)

  • 김형준;장정아;이인식;이용주;오세창
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.39-47
    • /
    • 2020
  • In this study, crash situations of representative bus crash types were elicited by analyzing a total of 1,416 bus repair record which were collected in 2018~2019. K-means clustering was used as a methodology for this study. Bus repair record contain the information of repair term, type of bus operation, responsibility of accident, weather condition, road surface condition, type of accident, other party, type of road and type of location for each data. Also, by checking collision parts of each bus repair record, each record was classified by types of collision regions. From this, 760 record are classified to frontal type, 363 record are classified to middle-frontal type, 374 record are classified to middle-rear type and 331 record are classified to rear type. As mentioned, k-means clustering was performed on each type of collision parts. As a result, this study analyzed the severity of bus crash based on actual bus accident data which are based on bus repair record not the crash data from the TAAS. Also, this study presented crash situation of representative bus crash types. It is expected that this study can be expanded to analyzing hydrogen bus crash and defining indicators of hydrogen bus safety.

시뮬레이션 기법을 이용한 차량내 전동휠체어 탑승자의 전방 충돌시 안전에 관한 연구 (The Safety Assessment of Wheelchair Occupants in Road Passenger Vehicles with the Frontal Crash: a Computer Simulation)

  • 이영신;이기두;임현균
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1518-1526
    • /
    • 2005
  • With increasing need of transportation services for people with disabilities and the aged, wheelchairs are used as their assistive devices to participate in daily and recreational activities and as seats of motor vehicle. However, as wheelchairs are primarily designed fer mobility assistive devices, not for vehicle seats, wheelchair users may experience serious injury when they meet car crashes. To date, neither engineering guidance for a wheelchair mounting system on the vehicle floor nor safety assessment analysis by a car crash has been studied for the domestic users. In this paper, in accordance with the ANSVRESNA WC-19, a fixed vehicle mounted wheelchair occupant restraint system (FWORS), wheelchair integrated restraint system (WIRS), and wheelchair integrated x-bend restraint system (WIXRS) subjected to frontal impact (20 g, 48 U) were analyzed using compute. simulations for domestic users. We present surrogate wheelchair occupant safety by head injury criteria (HIC), motion criteria (MC), and combined injury criteria (CIC).

정면충돌 시 고령운전자 상해 특성에 관한 실사고 연구 (Real-world Accident Study on Injury Characteristics of Elderly Driver in Car-to-Car Frontal Crashes)

  • 홍승준;박원필
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.12-19
    • /
    • 2011
  • Real-world accident cases were investigated to understand injury characteristics of the elderly driver. A total 10 cases of car-to-car frontal crash accidents from passenger car including SUV claimed to domestic car insurance company were reviewed. The injury characteristics of the elderly were analyzed from personal information (gender, age), medical treatment record (medical certificate, curative days), vehicle information (model, air-bag, seatbelt) and damage information. This study showed that elderly driver has higher possibility of thorax injury than non-elderly's. Moreover, Injury type and severity were more severe than non-elderly driver at similar type accident conditions. Also, elderly driver's medical treatment period needs 3 times more than non-elderly driver's.

WorldSID를 이용한 기둥측면 충돌 슬레드 시험 개발 방법 연구 (A study on development of the pole side impact sled test using WorldSID)

  • 오형준;김승기;임경호
    • 자동차안전학회지
    • /
    • 제5권2호
    • /
    • pp.5-10
    • /
    • 2013
  • The pole side crash caused fatal injury by comparison with other crash impact mode such as frontal and rear crash. EuroNCAP proposed the pole side crash test using WorldSID(World Side Impact Dummy). The objective of this study is to develop the pole side impact sled test using dummy rib deflection between crash and sled test. In the pursuit of this purpose, we fabricated new pole side sled buck and test preliminary pole sled using ES-2re. Through this, we found the sled acceleration pulse scale. Hardness and thickness of the EPP affects the rib deflection. We conducted the pole sled test using WorldSID based on the preliminary results. As a result, rib deflection was shown to correlate well between crash test and pole side sled test.

소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발 (Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus)

  • 김학덕;송주현;오재윤
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향 (Effect of the Main Structure Stiffness on the Frontal Collision Behavior)

  • 김천욱;한병기;김종찬;정훈
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.

SUV 차량의 전면 구조 형상에 따른 충돌 속도와 보행자 전도 거리의 상관관계에 관한 연구 (A Study on the Relationship between Impact Speed and Throw Distance of Pedestrian by the difference of the frontal shape of SUV vehicles)

  • 강대민;안승모
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.105-111
    • /
    • 2007
  • The type of pedestrian accident can be characterized by vehicular frontal shape and the height of pedestrian. The trajectory of pedestrian after collision by passenger car is different from that by bus due to vehicular frontal shape. The frontal shape of SUV vehicles is dissimilar to passenger car and bus. So, the trajectory and throw distance of pedestrian by SUV vehicles is not the same of passenger car and bus. In this paper, a series of pedestrian kinetic simulation were conducted to inspect the difference in throw distance between SUV vehicle and passenger car and bus by PC-CRASH that is the program for kinetic analysis of articulated body. From the results, if the height of pedestrian is taller than 1.70m, there is no difference in throw distance between SUV vehicle and passenger car, but if the height of pedestrian is about 1.55m throw distance of SUV vehicle is about 4m longer than that of passenger car at each impact speed. The throw distance of pedestrian by Bus is shorter than that of passenger car and SUV at each impact speed.

  • PDF