• Title/Summary/Keyword: Front air velocity

Search Result 111, Processing Time 0.025 seconds

Characteristics of Temperature Distribution of Pen for Exhaust Fan of Ventilation System (돈사용 환기팬을 위한 돈사 내 온도 분포 특성)

  • Kim, Hyeon-Tae;Kim, Woong
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.155-160
    • /
    • 2014
  • This study was researched for use by data for the improvement of ventilation system of optimum environmental control systems. The ventilation system for windowless swine housing was installed negative pressure system that circular pipe duct for inlet was installed on the ceiling and axial flow fan for exhaust was installed on the sidewall. The temperatures in the pen was measured using infrared thermography camera and thermocouple with data-logger. The temperature measurement points was selected by infrared thermography camera is alley (G), inlet (A), front-upper (B), front-lower (C), rear-upper (D), rear-lower (E), forward fan (F). The temperature measured at those selected points for temperature distribution was $28^{\circ}C$ that was maintained setting temperature in suitably. The temperature deviations of F point and A~E points in windowless swine housing was less then average $0.5^{\circ}C$. The result of air velocity of measured points was suitable to the breeding of pigs.

Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame (메탄/공기 예혼합화염의 동역학적 거동에 대한 정상초음파의 교반 효과)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.318-323
    • /
    • 2012
  • This study is conducted to scrutinize agitation effects of an ultrasonic standing wave on the dynamic behavior of methane/air premixed flame. The propagating flame is caught by high-speed schlieren images, through which flame front and local flame velocity are analyzed and obtained, too. It is revealed that the propagation velocity with ultrasonic standing wave is larger than the case without excitation except around the flammability limits. Also, vertical locations of distortions and depth of dents of the front are constant, unless the ultrasonic standing wave characteristics are not changed.

  • PDF

An Experimental Study on the Cooling Effect by a Turbulence Promoter in Impinging Air Jet System (충돌분류계(衝突噴流系)에서 난류촉진체(亂流促進體)에 의한 방열효과(放熱效果)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-56
    • /
    • 1992
  • The purpose of this study was to investigate the enhancement of heat transfer without additional external power in the case of rectangular air jet impinging vertically on the flat heating surface. In an attempt to enhance the heat transfer rate in two-dimensional impinging jet, the technique used in the present study was placement of square rod bundles as a turbluence promoter in front of the heat transfer surface. The effects of the clearance between the flat plate and square rod, and the nozzle exit velocity on the heat transfer characteristics have been investigated experimentally. The results obtained through this study were summerized as follows. High heat transfer enhancement was achived by means of flow acceleration and thinning of boundary layer by inserting rods in front of the heating flat plate. The smaller the clearance between rod and heating plate was, the larger heat transfer effect became. Average Nusselt number reached maximum at $Re=5.76{\times}10^4$ and C=1㎜ and the enhancement rate of heat transfer became maxium at this condition with the enhancement ratio as high as about 1.427 when normalized by the flat plate value. The correlating equation of average Nusselt number and Reynolds number was obtained, which is $\bar{N}uo=1.324{\cdot}Re^{0.459}{\cdot}(C/A)^{-0.034}$.

  • PDF

Dynamic PIV analysis of High-Speed Flow from Vent Holes of Fill-Hose in Curtain type Airbag (Dynamic PIV 기법을 이용한 커튼에어백 Vent Hole 고속유동 해석)

  • Jang, Young-Gil;Choi, Yong-Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.17-20
    • /
    • 2006
  • Passenger safety is fundamental factor in automobile. Among much equipment for passenger safety, the air bag system is the most fundamental and effective device. Beside of the front air bag system which installed on most of all automobiles, a curtain-type air bag is increasingly adapted in deluxe cars fur protecting passengers from the danger of side clash. Curtain type airbag system consists of inflator housing, fill hose, curtain airbag. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to deploy the air bag-curtain. Fill hose is a passageway to carry the gases from inflator housing to each part of curtain airbag. Therefore, it is very important to design the vent holes of fill hose for good performance of airbag deployment. But, the flow information from vent holes of fill hose is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the vent holes of fill hose using a dynamic PIV system. From the velocity Held data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the vent holes in the initial stage, we can see a flow pattern of wavy motion and fluctuation. The flow ejecting from the vent holes was found to have very high velocity fluctuations and the maximum velocity was about 480m/s at 4-vent hole region. From the mass flow rate with time, the accumulated flow of 4-vent hole has occupied about 70% of total flow rate.

  • PDF

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

Study on Minimum Heat Flux Point in Spray Cooling of Hot Plate (고온 평판의 분무냉각에 있어서 MHF점에 관한 연구)

  • 김영찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.974-981
    • /
    • 2001
  • In this study, the minimum heat flux conditions are experimentally investigated for the spray cooling of hot plate. The hot plates are cooled down from the initial temperature of about$ 900^{\circ}C$, and the local heat flux and surface temperatures are calculated from the measured temperature-time history. The results show that the minimum heat flux point temperatures increase linearly resulting from the propagation of wetting front with the increase of the distance from the stagnation point of spray flow. However, in the wall region, the minimum heat flux point temperature becomes independent of the distance. Also, the velocity of wetting front increases with the increase of the droplet flow rate.

  • PDF

A study of the Possibility of the Charcoal as Desiccant (흡착제로서 숯의 이용 가능성에 대한 연구)

  • Kim, Jong-Ryeol
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.5
    • /
    • pp.1083-1089
    • /
    • 2014
  • The aims of this study are to find out the possibility of the charcoal as a desiccant. The only humidity control under high temperature and high humidity environment can be provided to the thermal comfort at indoor environment. Functionality of charcoal is known to be deodorization, antiseptic effect, filtering effect and humidity control. But research related to humidity control in the country not yet. Thus, the dehumidification capacity of the charcoal experimental results to see the results were as follows : 1) Entering the experimental humidification is 148.02 g/h, 161.05 g/h and 243.2 g/h when air velocity was changed 1.5 m/s, 1.7 m/s and 2.0 m/s. 2) When the basis weight of the charcoal 2.0 m/s air velocity to obtain the largest number of adsorption capacity. 3) Dru bulb temperature and dew point temperature ware measured at front and rear of the charcoal. Absolute humidity is calculated from the measured Dry bulb temperature and dew point temperature. The quantity of dehumidification is calculated from absolute humidity is the largest 129.6 g/h at the air velocity 2.0 m/s.

Numerical Analysis of Heat Transfer Characteristics inside a Solenoid Motor System (Solenoid 전동기의 냉각을 위한 수치해석적 연구)

  • Jung, Min-Chae;Yoon, Sang Gil;Yoon, Dong Jin;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this study, the temperature distribution and heat transfer characteristics of each component in a solenoid motor system were numerically investigated when heat is generated by the steel pad attached to the solenoid ring of the motor. It was found that the internal airflow was complicated by the inflow velocity of air and the rotation of guide rollers and solenoid rings. Based on the numerical results, the tendency for temperature changes in the steel panel was lower due to the contact of the cooling air in the front in the rotational direction, and the peak temperature was at the front of the center. In particular, it was confirmed that as the air inflow rate was increased, the temperature was reduced due to strong convection. The temperature of the iron plate pad was decreased as the convective heat transfer coefficient was linearly increased with increasing airflow around the solenoid ring. In addition, the temperature of the iron plate panel was rapidly increased with increasing heat generation.

Investigation of the Three-Dimensional Turbulent Flow Fields of the Gas Swirl Burner with a Cone Type Baffle Plate(II)

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.906-920
    • /
    • 2001
  • This paper presents three-dimensional mean velocities, turbulent intensities and Reynolds shear stresses measured in the Y-Z plane of the gas swirl burner with a cone type baffle plate by using an X-type hot-wire probe. This experiments is carried out at the flow rate of 450ℓ/min which is equivalent to the combustion air flow rate necessary to heat release 15,000 kcal/hr in a gas furnace. Mean velocities and turbulent intensities etc. show that their maximum values exist around the narrow slits situated radially on the edge of and in front of a burner. According to downstream regions, they have a peculiar shape like a starfish because the flows going out of the narrow slits and the swirl vanes of an inclined baffle plate diffuse and develop into inward and outward of a burner. The rotational flow due to the inclined flow velocity going out of swirl vanes of a cone type baffle plate seems to decrease the magnitudes of mean velocities V and W respectively by about 30% smaller than those of mean velocity U. The turbulent intensities have large values of 50%∼210% within the range of 0.5

  • PDF

Experimental Study of the Non-Uniform Mean Flow at the Front of a Radiator in Engine Room (엔진룸내 방열기 전단면 유동 불균일도 측정에 관한 연구)

  • 류명석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.72-79
    • /
    • 1996
  • The recent trend of higher output engines with more auxiliary parts is resulting in greater heat generation in the engine compartment. In order to maximize the heat dissipation and eliminate the inefficient flow in the engine compartment, it is necessary to understand the flow field under the hood. In this respect, experimental study as well as numerical analysis should be conducted. The automated measuring system was constructed to obtain three dimensional mean flow data with high accuracy. The measurements have been made on a vehicle with a steady incoming air flow. The result shows that there exists a high degree of non-uniformity in the mean flow velocity at the front of radiator.

  • PDF