• 제목/요약/키워드: Front Wheel Drive

검색결과 38건 처리시간 0.032초

2단변속기를 사용한 전기차의 가속성능 향상 분석 (Analysis of Acceleration Performance Improvement for Electric Vehicle Using 2-Speed Transmission)

  • 김정민
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.84-90
    • /
    • 2022
  • In this study, the acceleration performance improvement was analyzed for a 2-speed transmission applied EV. An EV simulator was developed to analyze the EV acceleration performance. The EV simulator includes a load transfer model between the front and rear. Thus, the EV simulator can analyze the acceleration performance difference between the front-and rear-wheel drive EVs. From the simulation results, it is deduced that the acceleration performance can be improved by 7.96% for the front-wheel drive EV and 16.10% for the rear-wheel drive EV. The 2-speed transmission can improve the acceleration performance without decreasing its maximum velocity. Moreover, the 2-speed transmission can improve the acceleration performance of the rear wheel drive more than that of the front-wheel drive EV.

전륜구동 전기자동차의 기어비 변경에 따른 구동 특징 민감도 분석 (Sensitivity Analysis on Driving Characteristics According to Change in Gear Ratio of a Front Wheel Drive Electric Vehicle)

  • 손영갑;김정민
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.50-55
    • /
    • 2022
  • Acceleration performance, maximum velocity, urban driving energy consumption, and high-way driving energy consumption are important characteristics of electric vehicle driving. This study analyzes the effect of a gear ratio on these characteristics for a front wheel drive electric vehicle. The normalized sensitivity metric is used to compare the sensitivity of these scaled characteristics to the changes in the gear ratio. The sensitivity analysis results show that the normalized values are 0.95 for maximum velocity, 0.91 for acceleration performance, 0.51 for urban driving energy consumption, and 0.24 for high-way driving energy consumption. Therefore, the maximum velocity was affected the most by the changes in the gear ratio. These results can be used to determine the gear ratio of a front wheel drive electric vehicle to optimize the driving characteristics simultaneously.

수도작용 자주식 붐방제기의 작물손상을 고려한 차륜설계 및 조향형식별 차륜궤적 -작물손상의 시뮬레이션 (A Study on Wheel Design for a Self-Propelled Boom Sprayer considering the Rice Plant Damage and Wheel Track-Plant Damage Simulation of Various Steering Vehicles)

  • 정창주;김형조;조성인;최영수;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제21권1호
    • /
    • pp.34-43
    • /
    • 1996
  • The present pesticide application technology widely used with a power sprayer in Korea is assessed as the problem awaiting solution in the point of view of its ineffectiveness, inefficiency, and environmental contamination. As one approach to get rid of these problems, the boom spraying with ultra-low volume and precision application technology has been recommended. The study was undertaken to investigate plants damages incurred by the self-propelled boom-sprayer vehicle, to develop the design criteria of vehicle wheel, and to compare plant damages caused by the front wheel steering vehicle, the 4-wheel drive vehicle and the articulated vehicle, by the computer simulation. The experiment showed that the amount of damaged plants incurred by the self-propelled boom sprayer were about 0.29% in average in the field size of 100m$\times$50m(0.5ha), about 60~80% of which recovering while growing. The recommandable wheel size was analyzed to be 70~100cm in diameter, 8~15cm in width from the vehicle-plant-soil relationship. The simulation on damaged plants anticipated to be incurred by various steering vehicles showed that the smaller the turning radius, the lesser the damaged plants within its range of 3~5m. Average plant damage rate by the front wheel steering vehicle, the 4-wheel drive vehicle and articulated vehicle was relatively assessed to be 2 : 1.8 : 1.

  • PDF

자동차 등속 조인트 샤프트 길이에 따른 내구성 해석을 통한 융합연구 (A Convergence Study through Durability Analysis due to the Shaft Length of Automotive Constant Velocity Joint)

  • 최계광;조재웅
    • 한국융합학회논문지
    • /
    • 제9권8호
    • /
    • pp.179-184
    • /
    • 2018
  • 자동차의 구동방식은 전륜구동, 후륜구동, 4륜구동의 방식이 있다. 구동방식에서 운전자가 원하는 방향으로 전환하는 것과 바퀴에 동력을 전달하여 구동하는 두 가지의 역할을 수행하는데 있어 가장 중요한 부품이 등속 조인트이다. 도로상에서 주행 시에는 노면의 상태에 따라서 동력을 전달하는 부품들에 충격이 가해질 수 있다. 본 연구에서는 각각 샤프트의 길이가 다른 3개의 등속 조인트 각 모델들은 CATIA로 모델링하였고 ANSYS를 이용하여 구조 및 피로해석을 수행하였다. 본 연구 결과로는 Model 2가 다른 모델 대비 뛰어난 내구성을 가짐을 알 수 있었다. 이러한 결과를 이용하여 충격에 대한 내구성을 가지는 등속 조인트 설계를 할 때에 유용한 자료가 될 것이라고 사료되며, 등속 조인트의 디자인을 융합기술에 접목하여 미적 감각을 나타낼 수 있다.

전륜구동형 승용차의 엔진마운트 시스템 최적설계 (An Optimal Design of the Front Wheel Drive Engine Mount System)

  • 김민수;김한성;최동훈
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

Tractive Performance Comparison Between Wheel-Drive Tractors and A Rubber Belt Crawler Tractor

  • Nikoli, I.R.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1196-1201
    • /
    • 1993
  • Test of Caterpillar Challenger 65 tractor which has rubber tracks, and articulated four wheel drive tractor with dual wheels and a mechanical front wheel drive tractor were conducted on an unplowed and plouwed wheat stubble field. The following parameters were analyzed : tractive efficiency (ηv), net tractive coefficient ($\phi$n), slip ($\sigma$) , drawbar pull(Fv), drawbar power (Pv) and forward velocity(v). The maximum net tractive coefficient was established at the tractive efficiency of 0.60 on the unplowed wheat stubble field : for the Challenger 65 tractor 0.855 ; 4WD 0.624 and MFWD 0.534 and on the plowed wheat stubble field with the tractive efficiency of 0.40 for the Challenger 65 tractor 0.82 : 4WD 0.57 and for tractor MFWD 0.48.

  • PDF

비틀림짙동 저감을 위한 추진축 설계에 관한 연구 (A Study on the Design of Propeller Shaft for Reduction of Torsional Vibration)

  • 최은오;안병민;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.221-228
    • /
    • 1999
  • A full-time four wheel drive vehicle is driven literally full time by the front and the rear wheels. Front and rear drive shafts are rotated rapidly in the extremely torsional state, which can cause various vibration and noise problems. The purpose of this study is to reduce the vibration and the noise of the full -time four wheel drive vehicle. In this paper, both the causes and the methods for reduction of torsional vibration are suggested. For this study, the characteristics of the torsional vibration are analyzed by free and forced torsional vibration simulation. And this paper described the influence upon the torsional vibration with emphasis shafting system. The validity of simulation models is checked by the field test. The forced vibration simulation with the variations of shaft design factors are performed by the checked models. According to the simulation , the resonance region shifts and the torque fluctuation varies in the system,. Finally, the methods and the effects for the torsional vibration reduction in driveline are proposed.

  • PDF

독립구동 인휠 전기자동차의 주행 효율 최적화를 위한 구동력 분배 알고리즘 (Development of Power Distribution Algorithm for Driving Efficiency Optimization of Independently Driven Vehicle)

  • 박진현;송현우;정호운;박찬호;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권2호
    • /
    • pp.16-21
    • /
    • 2014
  • The purpose of this paper is to construct a control algorithm for improving the driving efficiency of 4-wheel-drive in-wheel electric vehicles. The main parts of the vehicle were modeled and the input-output relations of signals were summarized using MATLAB/Simulink. A performance simulator for 4-wheel-drive in-wheel electric vehicles was developed based on the co-simulation environment with a commercial dynamic behavior analysis program called Carsim. Moreover, for improving the driving efficiency of vehicles, a torque distribution algorithm, which distributes the torque to the front and rear wheels, was included in the performance simulator. The effectiveness of the torque distribution algorithm was validated by the SOC simulation using the FTP-75 driving cycle.

선회 시 차량의 외측전륜 스프링 상질량의 저주파 진동 (Low Frequency Vibration of the Sprung Mass on Front Outer Wheel in Cornering)

  • 이병림;이재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1889-1893
    • /
    • 2000
  • During the test drive of developing vehicle, a low frequency vibration of sprung mass on front outer wheel has been frequently observed in cornering with some speed. The purpose of this paper is to investigate the low frequency vibration of the sprung mass. The analysis result shows that the low frequency vibration is caused by sudden migration of the center of gravity of vihicle and it is determined by geometric points of suspension.

  • PDF

전륜구동 수동변속기에 대한 트라이볼로지적 고장사례 연구 (Tribological Failure Study of Manual Transmissions in Front Engine and Front Wheel Drive Vehicle)

  • 김청균;이일권
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.285-290
    • /
    • 2008
  • The purpose of this paper is to present the case study of tribological failure analysis on the gear damages, oil leakage, and sealant sealing in a manual transmission of front engine and front wheel drive vehicle. The manual transmission is to change the speed range and direction of the engines depending on the driving conditions by friction driving forces with input and output gear system. The material property and surface roughness of the gears are strongly related to the gear noise and micro-vibration, oil leakage and wear, which may decrease the real contact area of the gear and the strength of the oil film thickness between the driving gear and driven one. The O-ring damage of speedometer driven gear and bad sealant sealing of oil pan may produce oil leakage through the contact surfaces, which cause the oil shortage and seizure on the sliding surfaces of the transaxle gears. In the failure case study, the proper repair working and good lubrication are very important for the long life of the transaxle without any tribological failures and oil leakage.