• Title/Summary/Keyword: Fringe Image

Search Result 141, Processing Time 0.023 seconds

Digital Image Processing Technique for Photoelastic Isochromatic Fringe Sharpening (광탄성 등색프린지의 세선처리를 위한 디지탈 영상처리 기법)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.220-230
    • /
    • 1993
  • Photoelastic isochromatic fringes related to the difference of principal stresses have some bandwidth whose light intensities are not constant and asymmetrical in experimental images. Hence, it is difficult to measure fringe order accurately at a data point by visual observation. In this study, a method of fringe sharpening, which can extract shapened lines from both full-and half-order fringes by digital image processing, is developed. To test the method, various simple photelastic fringe patterns are simulated and their images are processed to yield sharpened lines. The method is then applied to general problems such as images of a circular disk compressed by diametrically concentrated loads and a circular cylinder sybject to internal pressure. The procedure is proved to be capable of extracting sharpened lines accurately from photoelastic isochromatic fringes.

  • PDF

A FRINGE CHARACTER ANALYSIS OF FRINGE IMAGE (Fringe 영상의 주파수 특성 분석)

  • Seo Young-Ho;Choi Hyun-Jun;Kim Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1053-1059
    • /
    • 2005
  • The computer generated hologram (CGH) designs and produces digital information for generating 3-D (3-Dimension) image using computer and software instead of optically-sensed hologram of light interference, and it can synthesis a virtual object which is physically not in existence. Since digital hologram includes an amount of data as can be seen at the process of digitization, it is necessary that the data representing digital hologram is reduced for storing, transmission, and processing. As the efforts that are to handle hologram with a type of digital information have been increased, various methods to compress digital hologram called by fringe pattern are groped. Suitable proposal is encoding of hologram. In this paper, we analyzed the properties of CGH using tools of frequency transform, assuming that a generated CGH is a 2D image by introducing DWT that is known as the better tool than DCT for frequency transform. The compression and reconstruction result which was extracted from the wavelet-based codecs illustrates that it has better properties for reconstruction at the maximum 2 times higher compression rate than the Previous researches of Yoshikawa[2] and Thomas[3].

Development of Integrated fringe Analysis System: For Severe Noise-ridden Interferometric Image Analysis (통합 프린지 해석 시스템 개발 : 심한 잡음을 포함하는 간섭 이미지 해석용)

  • Kang, Min-Gu;Joo, Won-Jong;Cha, Dong-Jin;Kang, Bo-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1534-1541
    • /
    • 2003
  • A new window-based, user-friendly fringe analysis system is developed, especially for analyzing noisy interferograms. The system integrates three major techniques, that is fringe tracking, Phase shifting, and Fourier transform, into a single shell by employing a unified procedure. Since the system is made in a modular fashion and all processing modules can be shared for any technique, a user can select necessary modules and easily edit the applying order of them based on the user's analysis strategy, which should be changed depending on the noise level of the image. The system provides a high-level GUI and a variety of image handling tools and therefore users can easily access the system and produce the optimal results without giving up in the middle of a process even for severely noise-contaminated interferometric images.

Development of Image Processing Technique for Photoelastic Fringe Analysis (광탄성 프린지해석을 위한 영상처리기법 개발)

  • 백태현;이재춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2577-2584
    • /
    • 1994
  • A method of digital image processing thechnique, which can multiply and sharpen isochromatic fringes in photoelasticity on both occasions, is developed. To test the method, photoelastic fringe patterns of a disk compressed by two diametrically opposite cocentrated loads are simulated and these patterns are processed to yield sharpened lines. The method is then aplied to measurement of residual stresses in glass bar. The procedure is proved to be capable of extraction sharpened lines accurately from photoelastic multiplied fringes, and yields good experimental results consistently and precisely.

Study on the Quantitativity of Image Sticking in the Fringe-field Switching(FFS) Mode (Fringe-Field Switching (FFS) 모드에서 잔상 정량화에 관한 연구)

  • Seen, Seung-Min;Kim, Mn-Sook;Jung, Yeon-Hak;Kim, Hyang-Yul;Kim, Seo-Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.720-723
    • /
    • 2005
  • We studied the quantitativity of the image sticking which is occured by the resicual DC in the fringe-electric field switching (FFS) mode. Actually, in the FFS mode driven by the strong fringe electric field, the asymmetric residual DC was formed in the bottom substrate. It made the impurity ion stick to the alignment layer such as polyimde layer. Thus, the differnece of the luminance existes after the stress check pattern is applied to the panel so that we can see the image sticking. This image sticking decreases as the residual DC value between specific patterns decreases. Therefore, it is necessary to control the residual DC for the FFS mode with the high image quality. It is possible to eliminate the image stiking when the extra pixel voltage is applied through the circuit tunning for reducing the difference of residual DC accroding to the panel position.

Monochromatic Image Analysis of Elastohydrodynamic Lubrication Film Thickness by Fringe Intensity Computation

  • Jang, Siyoul
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1704-1713
    • /
    • 2003
  • Point contact film thickness in elastohydrodynamic lubrication (EHL) is analyzed by image processing method for the images from an optical interferometer with monochromatic incident light. Interference between the reflected lights both on half mirror Cr coating of glass disk and on super finished ball makes circular fringes depending on the contact conditions such as sliding velocity, applied load, viscosity-pressure characteristics and viscosity of lubricant under ambient pressure. In this situation the film thickness is regarded as the difference of optical paths between those reflected lights, which make dark and bright fringes with monochromatic incident light. The film thickness is computed by numbering the dark and bright fringe orders and the intensity (gray scale image) in each fringe regime is mapped to the corresponding film thickness. In this work, we developed a measuring technique for EHL film thickness by dividing the image patterns into two typical types under the condition of monochromatic incident light. During the image processing, the captured image is converted into digitally formatted data over the contact area without any loss of the image information of interferogram and it is also interpreted with consistency regardless of the observer's experimental experience. It is expected that the developed image processing method will provide a valuable basis to develop the image processing technique for color fringes, which is generally used for the measurement of relatively thin films in higher resolution.

디지탈 영상처리를 이용한 광탄성 프린지의 세선화처리

  • 백태현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.127-133
    • /
    • 2001
  • Photoelastic isochromatic fringes related to the difference of principal stresses have some bandwidth whose light intensities are not constant and unsymmetrical in experimental image. Hence it is difficult to measure fringe order accurately at a data point by visual observation. In this study, the method of fringe sharpening, which can extract sharpened lines from both full-and half-order fringes by digital image processing, is developed. To test the method, various simple photoelastic fringe patterns are simulated and their image are processed to yield sharpened lines. The method is than applied to general problem such as image of a circular disk compressed by concentrated loads and a cylinder subjected to internal pressure. The procedure is proved to be capable of extracting sharpened lines accurately from photoelastic isochromatic fringes.

Measurement of Film Thickness by Fringe Intensity Analysis in Point Contact Elastohydrodynamic Lubrication (점접촉 탄성 유체 윤활에서의 띠 무의 강도에 의한 유막 두께 측정)

  • 장시열;최언진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.103-113
    • /
    • 1999
  • Point contact film thickness in elastohydrodynamic lubrication (EHL) is analyzed by the image processing method for the monochromatic incident light. Interference between the reflected lights both on Cr coating of glass disk and on super finished ball makes circular fringes, which are regarded as film thickness together with numbering of fringe order. In this study, we developed technology to measure the film thickness by analyzing dark and bright intensity waves which results from monochrome green light. Two typical fringe patterns only with intensity values 3re examined for the measurement of point contact EHL film thickness. We expect that this technology will give valuable clue to improve color image processing analysis for high resolution of EHL film thickness with white incident light.

  • PDF

Analysis of Stress Distribution of a Curved Beam Using Photoelasticity (광탄성법을 이용한 곡선보 평판의 응력분포 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Soo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.200-206
    • /
    • 1999
  • This paper describes the stress analysis of a curved beam by using photoelasticity. In order to measure accurate isochromatic fringe orders at certain locations. fringes are doubled and sharpened by digital image processing. After fringe multiplication and sharpening. fringe orders can be read as a quarter order interval (N=0, 1/4, 2/4, 3/4,...). The results obtained from photoelastic experiment are compared with those calculated by using theory. Two results are agreed well even though there are some scatter bands with maximum 8 percent for the results of photoelastic measurements and theoretical calculation. Difference may be occurred due to the slight misalignment of the direction to which axial load is applied in photoelastic experiment. It is confirmed that accurate measurement of stress distribution can be possible by using the techniques of fringe multiplication and sharpening in photoelasticity.

  • PDF

Speckle Interferometry and Automatic Fringe Analysis for Small Displacement Measurement (미세변위 측정을 위한 스펙클 간섭계의 구성과 자동 Fringe 해석)

  • 김성근;길상근;박한규
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1282-1289
    • /
    • 1989
  • Dual field speckle interferometry that is sensitive to the surface displacement of the object is constructed, and fringe patterns that have the displacement-informations are analysed using digital image processing. From 10\ulcorner to 80\ulcorner with respect to each specklegrams are obtained by double-exposure techniques, which are analysed by the proposed system and algorithm. Up to 10\ulcorner displacement, near measurable lower bound of Speckle Interferometry, fringe visibility is decreased due to decreasing fringe density, therefore relative errors are produced over 10% but over that displacement, relative errors are produced below 5%. Particularly, it is observed that spatial frequencies of each displacement are comparatively linear.

  • PDF