• Title/Summary/Keyword: Frictional resistance

Search Result 262, Processing Time 0.028 seconds

INVESTIGATION OF ENDOSCOPE CAPSULE DESIGN ON THE FRICTIONAL RESISTANCE INSIDE THE INTESTINE

  • Baek, N.K.;Sung, I.H.;Kim, J.S.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.367-368
    • /
    • 2002
  • The design of capsule body for self-propelled endoscope is important from the frictional resistance point of view. The capsule should be able to overcome the frictional resistance in order to move along the intestine. The motivation of this work was to gain a better understanding of the capsule body design on the frictional resistance of the capsule inside an intestine. A special experimental set-up was built to measure the frictional resistance as the capsule was being pulled inside the pig intestine specimen. Tests were performed with open and closed intestine specimens. Experimental data showed that smooth cylindrical capsule geometry resulted in the least frictional resistance. The resistance inside the closed intestine specimen was about four times higher than that of the open specimen. It is expected that the results of this work will be used to design the optimum propulsion system for the microendoscope.

  • PDF

말뚝기초의 연적 방향 극한하중

  • 김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11a
    • /
    • pp.209-236
    • /
    • 2002
  • Ultimate pile capacity - Point resistance - Frictional resistance - Determination of point and frictional resistances from field tests - Summary of recommendations from design Group effects Settlement analysis.

  • PDF

Effect of Frictional Resistance Force on a Liquid Pool Spreading Model with Continuous and Instantaneous Release (마찰저항이 연속누출과 순간누출을 가지는 액체 풀의 확산에 미치는 영향에 대한 해석적 연구)

  • Kim, Tae Hoon;Choi, Byung-Il;Kim, Myungbae;Do, Kyu Hyung;Han, Yong-Shik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.6
    • /
    • pp.487-494
    • /
    • 2013
  • In this study, solutions for a liquid pool spreading model with continuous and instantaneous release are discussed based on the model used in the FERC's report. The effects of the release time on the liquid pool volume and radius are investigated for the continuous release. For the continuous release with the frictional resistance force in the liquid pool spreading model, the vaporization time decreases as the release time increases. On the other hand, for the continuous release without the frictional resistance force in the liquid pool spreading model, the vaporization time increases as the release time increases. These phenomena are deeply related to the pool radius. In addition, the effects of the initial pool radius for the instantaneous release in the liquid pool spreading model are discussed. For the case with the frictional resistance force in the liquid pool spreading model, as reducing release time in the model with the frictional resistance force for the continuous release, the solution for a continuous release approaches to that for an instantaneous release. On the contrary to this, the pool volume and radius for the instantaneous release without the frictional resistance force are totally different from those for the continuous release without the frictional resistance force.

Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

  • Jang, Jinho;Choi, Soon Ho;Ahn, Sung-Mok;Kim, Booki;Seo, Jong Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.363-379
    • /
    • 2014
  • In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.

Experimental study on analysis of correlation between void fraction and drag reduction rate in air lubrication ship (공기윤활선 모사 실험에서의 공극률 및 마찰저항저감율 상관성 분석을 위한 실험적 연구)

  • Park, Seungchan;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • The reduction of CO2 emissions has been a key target in the marine industry since the IMO's MEPC published its findings in 2009. Air lubrication method is one of the mature technologies for commercialization to reduce the frictional resistance and enhance fuel efficiency of ships. Since the air lubrication pattern varies according to the ship's standing position and injection flow rate, in order to effectively control the air lubrication system, it is necessary to be able to judge the air layer development state based on the information collected from the monitoring sensor. In this study, we performed the air lubrication ship simulation experiment to measure the void fraction and the frictional resistance. The void fraction was measured to confirm the behavior of the air. Through the measurement of the frictional resistance, the change in frictional resistance reduction rate from the injection point to the longitudinal direction of the ship was confirmed. Based on the measurement results, correlation analysis was performed on void fraction and frictional resistance reduction rate.

Analysis of Pile Behaviors with Friction Resistance of Skin of Steel Pipe Pile in Ground where Settlement is Predicted (침하가 예측되는 지반에서 강관말뚝 주면 마찰 저항에 따른 말뚝의 거동 분석)

  • Lee, Kicheol;Shin, Sehee;Lee, Haklin;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.107-117
    • /
    • 2020
  • Open-ended steel pipe piles have outside frictional force and inside frictional resistance in which blocked soil acts on the inside of the steel pipe during installation. It is expected that the ultimate load will change depending on the inside and outside resistance. And, if the ground on which the piles were constructed is clay soil, it is predicted that it will have effect on the negative skin friction caused by the ground settlement. Therefore, in this study, the behavior according to the inside and outside resistance characteristics of steel pipe piles was analyzed numerically, and the frictional force distribution, axial load and settlements before and after the occurrence of ground settlement were calculated. As a result of the analysis, the inside frictional resistance had less influence than the outside frictional resistance. However, inside frictional resistance is considered to be one of the important factors considering the effect on the overall pile behavior, and both resistance factors need to be considered in the design process.

Changes in frictional resistance between stainless steel bracket and various orthodontic wires according to a change in moment (모멘트 변화에 따른 브라켓과 교정용 선재 사이의 마찰력 변화)

  • Jeong, Hye-Jin;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.2 s.121
    • /
    • pp.137-149
    • /
    • 2007
  • Objective: The purpose of this study was to compare changes in frictional resistance between the bracket and wire under dry and wet conditions according to a change in moment. Methods: A stainless steel bracket of $0.022"{\times}0.028"$ slot, and $0.019"{\times}0.025"$ stainless steel, beta-titanium, and nickel-titanium wires were used. A 10 mm length lever was attached to the test (sliding) brackets to generate a moment. The experimental model was designed to allow tipping until contacts were established between the wire and the mesiodistal edges of the bracket slot. The moment was generated by suspending a 100 g or 200 g weight on the end of the lever. The moments applied were $1000g{\cdot}mm\;(100g{\times}10mm)\;and\;2000g{\cdot}mm\;(200g{\times}10mm)$. The test brackets were ligated with elastomeric ligature for a constant ligation force and the fixed brackets were ligated with stainless steel ligature. Brackets were moved along the wire by means of an universal testing machine, and maximum frictional resistances were recorded. Results: Stainless steel wire showed least frictional resistance and there was no significant difference between beta-titanium and nickel-titanium except at $2000g{\cdot}mm$ moment in wet conditions. Frictional resistance of all wires increased as the moment increased from $1000g{\cdot}mm\;to\;2000g{\cdot}mm$. Under wet conditions, the frictional resistance of stainless steel wires increased in both $1000g{\cdot}mm\;and\;2000g{\cdot}mm$ moment conditions, but frictional resistance of nickel-titanium and beta-titanium increased only in $2000g{\cdot}mm$ conditions. Conclusion: These results indicated that various conditions influence on frictional resistance. Therefore, laboratory studies of frictional resistance should simulate clinical situation.

Frictional resistance of different ceramic brackets and their relationship to the second order angulation between bracket slot and wire (세라믹 브라켓의 종류 및 브라켓 슬롯과 와이어 각도에 따른 마찰 저항 차이)

  • Choi, Yoon-Jeong;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.207-217
    • /
    • 2006
  • Although ceramic brackets have been used widely for improved esthetics during treatment, ceramic brackets have some inherent problems; brittleness, attrition of the opposing teeth and high frictional resistance. This study was performed to understand the frictional resistance of the ceramic brackets, as well as to be a helpful reference for finding the solutions to the problem of frictional resistance. Three different kinds of brackets were used; metal bracket, polycrystalline ceramic brackets with a metal slot to reduce the high frictional resistance and monocrystalline ceramic brackets. The brackets were tested with a $.019{\times}.025$ stainless steel wire with a second order angulation of $0^{\circ}\;and\;10^{\circ}$, and the static and kinetic frictional forces were measured on the universal testing machine. The results of this study showed that the ceramic brackets, especially the monocrystalline ceramic bracket without a metal slot, generated higher frictional resistance than the metal bracket, and the frictional resistance was increased as the angulation between the bracket slot and the wire increased. Therefore, the development of the ceramic bracket with reduced frictional resistance and the prevention of excessive crown tipping during orthodontic treatment will lead to the simultaneous attainment of more efficient and improved esthetic treatment goals.

Full Scale Frictional Resistance Reduction Effect of a Low Frictional Marine Anti-fouling Paint based on a Similarity Scaling Method (상사축척법에 기반한 저마찰 선박 방오도료의 실선 마찰저항 저감성능 추정)

  • Yang, Jeong Woo;Park, Hyun;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • In this study, a series of full-scale extrapolation procedures based on the Granville's similarity scaling method, which was employed by Schultz (2007), is modified and then applied to compare the resistance performance between two different anti-fouling coatings. As an analysis example, the low frictional AF coating based on a novel skin-friction reducing polymer named FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer), which had been invented by the present author, is employed. The low frictional coating, which gives 25.4% skin frictional reduction in lab test, is estimated to give 18.2% total resistance reduction for a 176k DWT bulk carrier.

Change of Ice Resistance of Ice-Breaking Tanker According to Frictional Coefficient (빙마찰계수에 따른 쇄빙탱커의 빙저항 변화)

  • Cho, Seong-Rak;Lee, Sungsu;Lee, Yong-Chul;Yum, Jong-Gil;Jang, Jinho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.175-181
    • /
    • 2021
  • This study describes the model tests in ice according to the frictional coefficient of an ice-breaking ship and the change in ice resistance by the analysis method for each component of ice resistances. The target vessel is a 90K DWT ice-breaking tanker capable of operating in ARC7 ice conditions in the Arctic Ocean, and twin POD propellers are fitted. The hull was specially painted with four different frictional coefficients on the same ship model. The total ice resistance can be separated by ice breaking, ice buoyancy, ice clearing resistances through the tests in level ice, pre-sawn ice and creep test in pre-sawn ice under sea ice thickness of 1.2 m and 1.7 m. Ice resistance was analyzed by correcting the thickness and bending strength of model ice by the ITTC correction method. As the frictional coefficient between the hull and ice increases, ice buoyancy and clearing resistances increase significantly. When the surface of the hull is rough, it is considered that the broken ice pieces do not slip easily to the side, resulting in an increase in ice buoyancy resistance. Also, the frictional coefficient was found to have a great influence on the ice clearing resistance as the ice thickness became thicker.