• Title/Summary/Keyword: Frictional forces

Search Result 198, Processing Time 0.029 seconds

A New Experimental Technique for Calibration of Frictional Force in Atomic Force Microscopy (원자 현미경에서 마찰력 측정을 위한 새로운 실험 기법)

  • Choi, Duk-Hyun;Hwang, Woon-Bong;Yoon, Eui-Sung;Kim, Joon-Won;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.846-851
    • /
    • 2004
  • A new method has been proposed for the calibration of frictional forces in atomic force microscopy. Angle conversion factor is defined using the relationship between torsional angle and frictional signal. Once the factor is obtained from a cantilever, it can be applied to other cantilevers without additional experiments. Moment balance equations on the flat surface and top edge of a commercial step grating are used to obtain angle conversion factor. Proposed method is verified through another step grating test and frictional behavior of Mica.

  • PDF

Dynamic Stability and Vibration of a Drum Brake Shoe under a Distributed Frictional Force (분포 마찰력을 받는 드럼 브레이크-슈의 동적안정성과 진동)

  • Ryu, Bong-Jo;Ryu, Si-Ung;Yoshihiko Sugiyama;Oh, Boo-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.207-212
    • /
    • 2001
  • In this paper, dynamic stability and vibration characteristics of a flexible shoe in drum brake systems are investigated. The frictional force between the drum and the shoe is assumed as a distributed frictional force, while the shoe is modeled as an elastic beam supported by two translational springs at both ends and elastic foundations. Governing equations of motion are derived by energy expressions, and numerical results are calculated by finite element method. Through the numerical simulation, critical distributed frictional forces are calculated by changing the stiffness of two translational springs and elastic foundation parameters. It is also shown that the beam loses its stability by flutter and divergence depending on the stiffness of elastic supports and elastic foundation parameters. Finally, the time responses of the beam corresponding to their instability types are demonstrated.

  • PDF

Effect of the Gravity Forces on Flow Pattern and Frictional Pressure Drop in Two-Phase, Two-Component Flow

  • Choi, B.-H;Han, W.-H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.338-346
    • /
    • 2004
  • Experimental data on the effect of the variable gravity magnitude, namely microgravity, normal gravity and hyper-gravity, on flow pattern and frictional pressure drop were obtained during co-current air-water flow in a horizontal tube, The flow patterns were found to depend strongly on the gravity magnitude and certain flow pattern were found to depend on the gas superficial velocity. The effect of the gravity magnitude had an effect on the frictional pressure drop only at low flow rates. The present data are used to evaluate some of existing flow pattern transition and pressure drop models and correlations.

The Frictional Modes of Barrel Shaped Piston Ring under Flooded Lubrication (윤활유가 충분한 배럴형 피스톤-링의 마찰모드)

  • 조성우;최상민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.56-64
    • /
    • 2000
  • A friction force measurement system using the floating liner method was developed to study the frictional behavior of piston rings. The measurement system was carefully designed to control the effect of the piston secondary motion and the temperature of cylinder wall and oil. The friction force between the barrel shaped piston ring and the cylinder liner, was measured under the condition of flooded oil supply. The measured friction forces were classified into five frictional modes with regard to the combination of predominant lubrication regimes(boundary, mixed and hydrodynamic lubrication) and stroke regions(midstroke and dead centers). The modes could be identified on the Stribeck diagram of the friction coefficients and the dimensionless number of ㎼/p, where the friction coefficients are evaluated at near the midstroke and dead centers.

  • PDF

Tribological Performance of Multi-Walled Carbon Nanotubes in Mineral Oils under Boundary Lubricated Sliding (경계윤활 영역에서 다중벽 탄소나노튜브의 윤활 특성)

  • Baik Seunghyun;Lee Gyu-Sun;Yoon Do-Kyung;Lee Young-Ze
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.263-267
    • /
    • 2005
  • The tribological performance of multi-walled carbon nanotubes (MWNT) in mineral oils is investigated at ambient temperature. The frictional forces, wear amounts and cycles to scuffing of the oils with nanotubes and without those were measured using the ball-on-disk tester. It was found that there were little differences in the frictional forces and wear amounts of two oils. However, the scuffing times of oils with nanotubes were much longer than those of oils without nanotubes in sliding tests. The nanotubes were very effective on maintaining the oil gap and protecting the surfaces in boundary lubricated sliding.

The Friction Characteristics with Variation of Cross Section of Piston Seals for High Speed Pneumatic Cylinders (고속 공기압 실린더의 피스톤 실 단면형상 변화에 따른 마찰특성)

  • Kim, D.T.;Zhang, Z.J.
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • The paper deals with the design of a new low-friction seal for a pneumatic cylinder with high speed actuation. The seal performance with variation of the cross sections in piston seals with elastomeric material was investigated to minimize the friction forces using ABAQUS. The contact stress and strain distributions and frictional forces of the piston seals were investigated with variation of interference fits, supply pressures and friction coefficients. To develop adequate and productive procedures, the finite element models of the piston seals were created and nonlinear analysis of a seal design was conducted in order to build further knowledge and understanding of the seal's performance characteristics.

Experimental Study on the Structural Behaviour of Rotary Friction Damper (회전형 복합마찰댐퍼 구조거동에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • The new rotary friction damper was developed using several two-nodal rotary frictional components with different clamping forces. Because of these components, the rotary friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, various dependency tests such as displacement amplitude, forcing frequency and long term cyclic loading were carried out to evaluate on the structural performance and the multi-slip mechanism of the new damper. Test results show that the multi-slip mechanism is verified and friction coefficients are dependent on displacement amplitute and forcing frequency except long term cyclic loading.

Rigid-Plastic Finite Element Analysis of Anisotropic Sheet Metal Forming Processes by using Continuum Elements (연속체요소를 이용한 이방성 박판재료 성형공정의 강소성 유한요소해석)

  • 이동우;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.24-27
    • /
    • 1997
  • In the present work, rigid-plastic continuum elements employing the shape change and anisotropic effects are derived for the purpose of applying more realistic blankholding force condition in three-dimensional finite element analysis of sheet metal forming process. In order to incorporate the effect of shape change effectively in the derivation of finite element equation using continuum element for sheet metal forming, the convected coordinate system is introduced, rendering the analysis more rigorous and accurate. The formulation is extended to cover the orthotropic material using Hill's quadratic yield function. For the purpose of applying more realistic blankholding force condition, distributed normal and associated frictional tangent forces are employed in the blankholder, which is pressed normal and associated frictional tangent forces are employed in the blankholder, which is pressed against the flange until the resultant contact force with the blank reaches the prescribed value. As an example of sheet metal forming process coupling the effect of planar anisotropy and that of blankholding boundary condition, circular cup deep drawing has been analyzed considering both effects together.

  • PDF

An experimental study on friction measurement of piston-ring assembly of a SI engine (가솔린 기관의 피스톤-링 결합체 마찰력 측정에 관한 실험적 연구)

  • 이동원;윤정의;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.66-74
    • /
    • 1990
  • Friction between piston-ring assembly and cylinder wall of a spark ignition engine was evaluated under various engine operating conditions utilizing a grasshopper linkage system. The friction force was estimated by the force balance relation at the small end of connecting rod. Three forces were chosen to be measured for the objective. They were gas pressure inside the cylinder, inertia force of the piston-ring assembly, and the force exerted by the connecting rod. These forces were measured by a piezo type pressure sensor, an accelerometer and strain gauges, respectively. Comparisons were made with the frictional force evaluated by the conventional method where the assumption of constant rotational speed of engines was adopted. Due to the variation of rotational speed of engines, the conventional method was found to lead to a large error in the evaluation of the frictional force.

  • PDF

Analysis of Frictional Power Loss Due to the Effects of Elastic Deformation in the Piston Skirt Profile (탄성변형을 고려한 피스톤 스커트의 마찰 손실 해석)

  • 조준행;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.385-396
    • /
    • 2000
  • The secondary motion of piston occurs due to the transient forces and moments in the clearances between piston skirt and cylinder liner The motions are very related to the skirt profile and the magnitude of piston-pin offset. Above all, the elastic deformation is another major effect on the piston secondary motion that has not been considered in the previous researches. In this work, the effects of elastic deformation of the piston skirt on the secondary piston motion are studied for the frictional power loss by using commercial softares, PISDYN and ANSYS.

  • PDF