• Title/Summary/Keyword: Friction-torque

Search Result 378, Processing Time 0.033 seconds

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change (각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어)

  • Choi, Hyun-Do;Woo, Chun-Kyu;Kang, Hyun-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.

A Study on Slow Rolling tire for Prediction of the Tire Forces and Moments (회전하는 타이어의 접지면 동특성 예측에 관한 연구)

  • 김항우;황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.161-169
    • /
    • 1997
  • It is known that tire plays an important role to the dynamic performances of a vehicle such as noise, vibration, ride and handling. Therefore, force and moment measurements have been a part of the traditional tire engineering process. In this paper, a computational analysis technique has been explored. A FE model is made to simulate inflation, vertical load due to the vehicle weight, and the slow rolling of a radial tire. A rigid surface with Coulomb friction is included in the model to simulate the slow rolling contact. The tire slip during the in-plane motion of the rigid surface is calculated. Results are presented for both lateral and vertical loads, as well as straight ahead free rolling. The calculated and measured tire slips are in good correlation. A Study on slow Rolling Tire for perdiction of tire Forces and Moments.

  • PDF

Position Control for AC Servo Motor Using a Sliding Mode Control (슬라이딩 모드제어에 의한 교류 서보 전동기의 위치제어에 관한 연구)

  • 홍정표;홍순일
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.210-215
    • /
    • 2004
  • The dynamic model of ac servo motor is influenced very much due to rotor resistance change and nonlinear characteristic. By using the sliding mode control the dynamic behavior of system can be made insensitive to plant parameter change and external disturbance. This paper describes the application of the sliding mode control for position control of ac servo motor. The control scheme is derived and designed. A design method based on external load parameters has been developed for the robust control of ac induction servo drive. The proposed control scheme are given based on the variable structure controller and slip frequency vector control. Simulated results are given to verify the proposed design method by adoption of sliding mode and show robust control for a change of shaft initial J, viscous friction B and torque disturbance.

  • PDF

Effect of Air Conditioning System on Vehicle Fuel Economy in a Passenger Car (Air Conditioning System이 차량 모드 주행 연비에 미치는 영향 연구)

  • Kim, Dae-Kwang;Cho, Geun-Jin;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2007
  • Fuel efficiency is one of the major issues in regard to energy and environment. As customers desire more comfortable vehicles, increase of accessory traction force is necessary. Air conditioning system (ACS) consumes the biggest traction force among accessories, especially during summer. This means ACS is the primary object deteriorating fuel economy among accessories. Since direct measurement of traction force and fuel consumption in practical vehicle is difficult, comparison analysis is taken between vehicle with and without ACS working. For this comparison, real time measurements are carried out to know ACS traction force and fuel consumption. As a result of the comparison, a vehicle without ACS operation was 15.92% superior to a vehicle with ACS operating. It could be used as a fundamental material for improvement ACS for better fuel efficiency.

An analysis of the performance of sector shaped, pivoted pad thrust bearings in consideraation of the inlet pressure (패드의 선단압력을 고려한 부채꼴 모양의 피봇식 추력베어링의 성능해석)

  • 김종수;김경웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1063-1070
    • /
    • 1988
  • The influence of the inlet pressure on bearing performance of tilting pad bearings in laminar regime is examined. A simple flow model is presented to calculate the inlet pressure in inlet flow that occurs at a short distance ahead of the bearing inlet. The bearing performances are obtained, load capacity, friction torque and lubricated flow-rate, etc, numerically for the inlet pressure boundary conditions with and without pressure jump. The computed results of both cases show that bearing performance and the optimum pivot position changes remarkably according to the bearing operating conditions. The influence of the inlet pressure on bearing performance must be considered to analyze the bearing performance precisely.

STSAT RWA Micro-Vibration Test and Analysis (과학기술위성 반작용휠의 미소진동 측정 및 분석)

  • Oh, Shi-Hwan;Nam, Myeong-Ryong;Park, Yon-Mook;Yim, Jo-Ryeong;Keum, Jung-Hoon;Rhee, Seung-Wu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.695-698
    • /
    • 2004
  • STSAT RWA (Reaction Wheel Assembly) micro-vibration is measured using KISTLER dynamic plate that can provide the time signals of three orthogonal forces and torques simultaneously up to 400Hz. In the post-processing, measured data are evaluated with respect to the wheel spin rate in both time and frequency domains, and the static/dynamic unbalances are evaluated from the extracted first harmonic component. Also the friction torque profile at each wheel speed is estimated from the measured data. Several higher order harmonic components are observed, that comes from its rotor shape as well as the wheel bearing characteristics. One of the most peculiar characteristics of this wheel is that the dynamic properties of two radial unbalance components are much different from each other as the RWA mounting configuration on a spacecraft is different from conventional RWA mounting configuration. Rocking mode is not appeared below 400Hz for all operating speed because the wheel size is very small. The post-processed results will be used for jitter analysis of STSAT due to RWA micro-vibration.

  • PDF

Testing of Load Capacity of a Foil Thrust Bearing

  • Kim, Choong Hyun;Park, Jisu
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.300-306
    • /
    • 2018
  • In this study, the performance of foil thrust bearings was investigated by performing bearing take-off and load capacity tests, using an in-house designed and manufactured vertical bearing test rig. The mean take-off rotational speed and maximum load capacity of the bearing specimen were ~18,000 rpm and ~80 kPa, respectively. The vertical bearing test rig was observed to yield higher coefficients of friction and frictional torques than a horizontal bearing test rig under identical test conditions. This was a result of its structural characteristics, in that the bearing specimen is placed atop the thrust runner, which keeps it from being separated from the runner after the bearing take-off. In addition, bearing take-off was observed at a higher runner rotational speed as this structure keeps air from flowing between the top foil and runner surfaces, which requires a higher runner speed. The parallel alignment between the bearing specimen and runner surfaces can be maintained within a certain range more easily in a vertical test rig than in a horizontal test rig. Because of these advantages, Korean Industrial Standard, KS B 2060, recommends a vertical bearing test rig as the standard test device for foil thrust bearings.

A Study of Hydraulic Turbine Design for The Discharge Water Energy Harvesting (방출 수 에너지 하베스팅을 위한 수차 설계에 관한 연구)

  • Cheong, Han Seok;Kim, Chung Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-83
    • /
    • 2021
  • We modeled the helical turbine and three modified helical turbines for the structure of the hydraulic turbine for discharge water energy harvesting. A structure that can reduce the load applied to the blade by placing a center plate is our basic concept. The shape was reduced to 1/5, fixed to a size of 240 mm in height and 247 mm in diameter, and modeled by changing the width and the angle of the hydraulic turbine blade. The pipe inner diameter of the simulation pipeline equipment is 309.5 mm, and the simulation section was 4 m in the entire section. The flow velocity was measured for two cases, 1.82 m/s and 2.51 m/s, with the parameters being the amount of power generation, hydraulic turbine's torque, and hydraulic turbine's rotation speed. The measurement results confirmed that the flow velocity at the center, which has no pipe surface resistance, has a great influence on the amount of power generation; therefore, the friction area of the turbine blade should be increased in the center area. In addition, if the center plate is placed on the helical turbine, durability can be improved as it reduces the stress on the blade.

One Dimensional Analysis of Hydrostatic Power Steering Unit Composed of Two Gerotors (두 개의 지로터로 구성된 전유압 파워스티어링 장치의 1차원 해석)

  • Kim, Kap Tae;Ryu, Beom Sahng;Kim, Kyung Sik;Jeong, Hwang Hun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.113-124
    • /
    • 2020
  • Most of the work of construction equipment and agricultural machinery is done in off-road conditions. Autonomous driving required in these conditions uses GPS sensors, and PID controllers to control their speed and position. The hydrostatic steering, which is composed of a PSU, hydraulic hoses, and cylinders, rather than a mechanical coupling is used in these equipments. The PSU plays a key role in hydrostatic steering. Precise control of the position under various conditions requires detailed behavioral analysis of the basic components and operation. Two Gerotor PSU is now a commonly used safer option. The components of the PSU can be divided into mechanical and hydraulic actuating elements by its behavior. Since the system is combined by mechanical and hydraulic elements, the modelings are performed using Amesim, which is one of the most effective for the multi-domain dynamic system analysis. To confirm the validity of the model, input torque and pressures are checked with varying steering speed. The opening and the steering speed of normal and newly designed control valve set is investigated with the effect of centering spring force and friction. Finally, simulation results with fully detailed model with two gerotors are analyzed and compared with simple model.