• Title/Summary/Keyword: Friction speed

Search Result 1,256, Processing Time 0.032 seconds

Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400 (겹치기 마찰교반접합된 Inconel 600/SS 400 합금의 미세조직과 기계적 특성 평가)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.123-129
    • /
    • 2012
  • The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from $20{\mu}m$ in the base material to $8.5{\mu}m$ in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.

Experimental study on the helical flow field in a concentric annulus with rotating inner cylinders (안쪽축이 회전하는 환형관내 헬리컬 유동장의 실험적연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.631-636
    • /
    • 2000
  • The experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ration of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure drops and skin-friction coefficients have been measured for the fully developed flow of water and that of glycerine-water solution (44%) at a inner cylinder rotational speed of $0{\sim}600$ rpm, respectively. The transitional flow have been examined by the measurement of pressure drops and the visualization of flow field, to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients and to understand the flow instability mechanism. The present results show that the skin-friction coefficients have the significant relation with the Rossby numbers, only for laminar regime. The occurrence of transition has been checked by the gradient changes of pressure drops and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, is gradually declined for turbulent flow regime. Consequently, the critical (axial-flow) Reynolds number decreases as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the excitation of taylor vortices.

  • PDF

Development of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Invar 42/SS 400 (겹치기 마찰교반접합된 Invar 42/SS 400 합금의 미세조직과 기계적 특성 발달)

  • Song, K.H.;Nakata, Kazuhiro
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.34-39
    • /
    • 2012
  • This study was conducted to investigate the microstructure and mechanical properties of friction stir lap joints. Invar 42 and SS 400 were selected as the experimental materials, and friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. The application of friction stir welding to Invar 42 effectively reduced the grain size in the stir zone; the average grain size of Invar 42 was reduced from $11.5{\mu}m$ in the base material to $6.4{\mu}m$ in the stir zone, which resulted in an improvement in the mechanical properties of the stir zone. The joint interface between Invar 42 and SS 400 showed a relatively sound weld without voids and cracks, and the intermetallic compounds with $L1_2$ type in lap jointed interface were partially formed with size of 100 nm. Moreover, the hook in the advancing side of Invar 42 was formed from SS 400, which contributed to maintenance of the tensile strength. The evolution of microstructures and mechanical properties of friction stir lap jointed Invar 42 and SS 400 are also discussed herein.

Measuring methods for friction coefficient of disc-pad through running test (실차 주행시험을 통한 디스크-패드 마찰계수 측정방법)

  • Mok, Jin-Yong;Kim, Young-Guk;Kim, Seog-Won;Park, Chan-Kyoung;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.996-1001
    • /
    • 2008
  • To stop the train safely within the limited traveling distance and reduce its speed to the desired speed, it is necessary to guarantee the correct braking force. Presently, most trains have electric propulsion system and have adopted combined electrical and mechanical(friction) braking system. The friction coefficient between brake disc and pad is an important parameter in determining the mechanical braking force. In general, friction coefficient data of braking material have been taken through the dynamo-test in a laboratory. This study have suggested two methodologies that can measure friction coefficient of braking material on the train's actual operating condition. The first is the direct method; measure the brake force and the clamping force applied on the mechanical brake by using strain gauges installed at the brake disk, and then calculate it. The second method is the indirect method; obtain the friction coefficient by using the train load and the equivalent brake force which is deducted the longitudinal force, such as resistance to motion, gradient resistance and curved resistance, from the inertia force applied to the train.

  • PDF

Experimental Investigation on Friction Performance of Brake Linings with Two Different Solid Lubricants (두 종의 고체윤활제에 따른 마찰재의 마찰성능에 관한 실험적 고찰)

  • Kim, Seong-Jin;Bae, Eun-Gap;Yoon, Ho-Gyu;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.72-78
    • /
    • 2001
  • An experimental investigation was conducted to examine the tribological behavior of NAO (non-asbestos organic) type brake linings containing different volume ratios of graphite and antimony trisulfide (Sb$_2$S$_3$). In order to investigate the effect of the solid lubricants on brake performance, three different friction tests (pressure, speed, and temperature sensitive tests) were carried out using a scale dynamometer. The test results showed that the friction characteristics were strongly affected by the type and the amount of solid lubricants in the brake lining. It was found that the brake linings with both solid lubricants were better in friction stability due to the complementary role of the two disparate lubricating properties at various pressure and speed conditions. In particular, the brake lining containing higher concentrations of graphite showed better fade resistance than others during high temperature friction test.

  • PDF

A Study on the Rotating Flow in an Annulus (환형관내 회전유동에 관한 연구)

  • 김영주;우남섭;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.11a
    • /
    • pp.153-158
    • /
    • 2003
  • This study concerns the characteristics of helical flow in a concentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and 0.2% aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of 0∼500rpm. The effect of rotation on the skin friction is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime.

  • PDF

A Study on the Friction Characteristics of Oil Hydraulic Vane Pump (油壓베인펌프의 摩擦特性)

  • Jung, Jae-Youn;Lee, Chong-Soon;Kim, Jang-Hyeon;Rhee, Bong-Goo
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.55-59
    • /
    • 1989
  • Measurement of the friction force of vane tip have been made to provide essential information for the study of the pump dynamics, the pump design and the analysis of triboligical problems in the sliding components. The influences of the radial load, rotating speed and frequency of vane on the friction forces of vane tip have been investigated. The results indicated that the friction coefficient of vane tip are affected by the rotating speed remarkably but the effect of acting load on the vane tip and frequency of load are very small. The stribecks diagram shows that the lubrication regime of the sliding point of vane tip is mixing lubrication.

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF

A Study on the Measurement of Disc-Pad Friction Coefficient for HSR-350x (한국형고속열차의 디스크-패드 마찰계수 측정에 관한 연구)

  • Kim, Young-Guk;Park, Chan-Kyeong;Park, Tae-Won;Kim, Seog-Won
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.677-681
    • /
    • 2006
  • In general, the braking system of high speed train has an important role for the safety of the train. To stop the train safely at its pre-decided position, it is necessary to combine the various brakes properly. The Korean high speed train (HSR-350x) has adopted a combined electrical and mechanical (friction) braking system. In this study, the measuring method that can obtain the disc braking forces and friction coefficient between disc and pad during on-line test of HSR-350x has been suggested and verified through the comparison of the results obtained from this method and those of the results of the dynamo-tests.

Analysis of a Low Friction Piston Seal in Pneumatic Cylinders (공기압 실린더용 저마찰 피스톤 실의 특성해석)

  • Kim, D.T.;Zhang, Z.J.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2011
  • Nonlinear seal friction in pneumatic cylinders can impede the performance of pneumatic systems designed for high precision positioning with favorable high speed actuation. The behaviour of an elastomeric piston seals in high speed pneumatic cylinders is analyzed by nonlinear finite element analysis using ABAQUS. The contact pressures, stress and strain distributions and frictional forces of the squeeze type piston seal are simulated with variation of the seal radial installed interference, the operating pressures, friction coefficients and piston rod velocities. The nonlinear finite element model of the squeeze type piston seal is used to predict deformation of a seal, friction force and contact pressure distributions.