• Title/Summary/Keyword: Friction pin

Search Result 330, Processing Time 0.027 seconds

Development of Seismic Retrofit Devices for Building Structures

  • Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • In this paper passive seismic retrofit devices for building structures developed by the author in recent years are introduced. The proposed damping devices were developed by slightly modifying the configuration of conventional devices and enhancing their effectiveness. First a seismic retrofit system consisting of a pin-jointed steel frame and rotational friction dampers installed at each corner of the steel frame was developed. Then two types of steel slit dampers were developed; box-type slit damper and multi-slit damper. In addition, hybrid dampers were developed by combining a slit damper and a friction damper connected in parallel. Finally a self-centering system was developed by using preloaded tendons and viscous dampers connected in series. For each retrofit system developed, an appropriate analytical model was developed, and the seismic performance was verified by loading test and earthquake analysis of case study structures. The experimental and analysis results show that the proposed systems can be used efficiently to enhance the seismic performance of building structures.

Investigation of Friction and Wear Characteristics of Cast Iron Material Under Various Conditions (다양한 조건에 따른 주철 소재의 마찰/마모 특성에 관한 연구)

  • Joo, Ji-Hoon;Kim, Chang-Lae;Nemati, Narguess;Oh, Jeong-Taek;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.765-772
    • /
    • 2015
  • Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3d profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.

Diamond Like Carbon Coating on WC Core Pin for Injection Molding of Zirconia Optical Ferrule (지르코니아 광페룰 사출성형용 WC 코아 핀의 Diamond Like Carbon 코팅)

  • Park, Hyun-Woo;Jeong, Se-Hoon;Kim, Hyun-Young;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.570-574
    • /
    • 2010
  • A diamond-like carbon (DLC) film deposited on a WC disk was investigated to improve disk wear resistance for injection molding of zirconia optical ferrule. The deposition of DLC films was performed using the filtered vacuum arc ion plating (FV-AIP) system with a graphite target. The coating processing was controlled with different deposition times and the other conditions for coating, such as input power, working pressure, substrate temperature, gas flow, and bias voltage, were fixed. The coating layers of DLC were characterized using FE-SEM, AFM, and Raman spectrometry; the mechanical properties were investigated with a scratch tester and a nano-indenter. The friction coefficient of the DLC coated on the WC was obtained using a pin-on-disk, according to the ASTM G163-99. The thickness of DLC films coated for 20 min. and 60 min. was about 750 nm and 300 nm, respectively. The surface roughness of DLC films coated for 60 min. was 5.9 nm. The Raman spectrum revealed that the G peak of DLC film was composed of $sp^3$ amorphous carbon bonds. The critical load (Lc) of DLC film obtained with the scratch tester was 14.6 N. The hardness and elastic modulus of DLC measured with the nano-indenter were 36.9 GPa and 585.5 GPa, respectively. The friction coefficient of DLC coated on WC decreased from 0.2 to 0.01. The wear property of DLC coated on WC was enhanced by a factor of 20.

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael;Bohm, Stefan;Schuddekopf, Sven
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2014
  • Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.

A Experimental Study on Wear Characteristics of Cu Alloy for Piston Head and Bush Material of Hydraulic Servo Cylinder (유압 서보실린더의 동합금 피스톤 헤드와 부시의 마멸특성에 관한 실험적 연구)

  • Cho, Yon-Sang;Kim, Young-Hee;Byon, Sang-Min;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.330-334
    • /
    • 2009
  • Hydraulic servo cylinders have been used to control accurately a large machine in power plant. Especially, Piston head and bush of servo cylinder is assembled sleeve and piston head and bush made of Cu alloy and pad sealing part. A damages of sleeve and piston head, bush are caused by friction and wear. Thus, It is necessary to examine friction and wear characteristics of Cu alloys for the piston head and bush. In this study, to be reliable on the piston and cylinder parts, dry friction and wear experiments were carried out with Cu alloys of four kinds of AlBC, PBC, BC and BS using reciprocating friction tester of pin on disk type. From this study, the result was shown that the AlBC and PBC with alloy elements were excellent to resistance wear. As the sliding speed was increased, the wear loss of PBC decreased than another Cu alloy.

A Discussion on Measurement of Springback Ratio Using Winding Bend Rig (감아굽힘 장치를 이용한 스프링백 비의 측정에 대한 역학적 검토)

  • 김용우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2001
  • To measure springback ratio of thin sheet or plate, winding bend rig is made. It bends a specimen with keeping its curva-ture constant and measure the bending angles before and after release of bending load. To check the performance of the bend rig, we calculated the bending moment by two ways which are based on simple beam theory. One is that the bending moment is calculated by using the results of bending test, and the other is that the moment is calculated by using the results of tensile tests. The former may entails the effect of the other is that the moment is calculated by using the results of tensile tests. The former may entails the effect of the friction between bending pin of the rig and surface of specimen, but the latter does not contain any effects of the friction since the bending moment is obtained by using tensile tests. Never-theless, the values of the two bending moments shows the same level of bending moment, which implies that the friction does not influence on the presence of friction within the scope of the test performed in this experiment. This phenomenon is explained theoretically by using moment equilibrium.

  • PDF

Tribological Characteristics of Dental Metal Alloys (치과 보철용 금속 합금의 마찰 마멸 특성)

  • Kim, J.H.;Choi, W.S.
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.235-241
    • /
    • 2013
  • The tribological characteristics of dental metal alloys and zirconia were studied by carrying out a friction and wear performance test. In this study, a pin-on-disk-type tester was used and dead weight was employed as the normal load applied to the test specimen. The friction coefficient of dental metal alloys was investigated in terms of their weight and sliding velocity. Microscopic observations were carried out on worn surfaces of specimens. The results indicated that among all metal alloys, Super-A had the highest friction coefficient. Super-A had the lowest amount of wear among all metal alloys, and the amount of wear increased in the following order: Crown & Bridge, Porcelain, and Partial. Crown & Bridge had the best friction coefficient, but the hardness of Crown & Bridge was lower than that of Porcelain and Partial. Experimental measurement results indicated that the disk weight before and after the experiment was the same.

A Study on the Friction Characteristics of Vulcanized Natural Rubber Plate (가황된 천연고무 판재의 마찰특성에 관한 연구)

  • Kim, D.J.;Nah, C.;Lee, Y.S.;Kim, W.D.
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • The friction characteristics of natural rubber plates under various conditions including sliding speed, normal force, hardness, lubrication conditions and thickness of plate are analyzed experimentally. The frictional force and normal force are measured by a tester pin and a load ceil with strain gages. Experimental results suggest that the coefficient of friction decreases with increasing the hardness of rubber and decreasing the thickness of plate. The effect of sliding speed is not significant over the speed range employed. The coefficient of friction is found to be about 0.1 under oil lubrication condition and varies from 0.9 to 3.9 under no lubrication condition.

  • PDF

Investigation of the Effect of Wear Particles on the Acoustic Emission Signal (마모 입자가 음향방출신호에 미치는 영향에 관한 연구)

  • Han, Jae-Ho;Shin, Dong-Gap;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.317-322
    • /
    • 2019
  • In spite of progress in tribological research, machine component failure due to friction and wear has been reported frequently. This failure may lead to secondary damage that can cause huge expense for maintenance and repair. To prevent economic loss, it is important to detect and predict the initial failure point. In this sense, various researchers have been tried to develop Condition Monitoring (CM) method using Acoustic Emission (AE) generated while the materials undergo failure. In this study, effect of particles on friction and wear was investigated using the pin-on-plate friction test and AE signal was recorded with a band-width type AE sensor. The experiments were performed in dry and lubricant conditions using steel and glass as specimens. After the experiment, 3D laser microscope image was captured to evaluate the wear behavior quantitatively. The AE signal was analyzed in time-domain and frequency-domain. The amplitude was compared with the frictional results. The results of this study showed that particle generation accelerate wear, generate high magnitude AE signal and change the frequency characteristics of the signal. Also, lubricant condition test results showed low coefficient of friction, low wear rate, and low magnitude of AE signal compared to the dry condition. It is expected that the results of this study will aid in better assessment of wear in CM technology