• Title/Summary/Keyword: Friction pin

Search Result 330, Processing Time 0.029 seconds

An Experimental Investigation of the Effect of Corrosion on Dry Friction Noise (건성마찰 소음에 대한 부식 영향도 실험연구)

  • Baek, Jongsu;Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1251-1256
    • /
    • 2015
  • This study investigates the friction noise characteristic in relation to the corrosion of metal by using the frictional reciprocating and pin-on-disk system. From the experiments, it is found that the corrosion of metal advances the onset time and increases the magnitude of friction noise. Further, it is observed that the effect of corrosion on friction noise stems from the alteration of tribo-surface during repetitive frictional motion. The alteration of the corrosive contact surface induces a negative friction-velocity slope, by which the corrosion of metal can generate dynamic instability faster than non-corrosion of metal.

Fabrication of Embedded Thermocouple Sensor and Experimental Study on Measurement of Interface Temperature for Dry Friction (임베디드 서모커플 센서 제조 및 미끄럼 마찰 계면온도 측정에 관한 실험적 연구)

  • Jang, Beomtaek;Lim, Youngheon;Kim, Seocksam
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.372-377
    • /
    • 2013
  • This study investigated the interface temperatures for the sliding friction of three types of pins fabricated with thermocouple wires by the suction casting method. Optical microscopy was used to examine the surrounding material state at the bonding interface with the thermocouple wires. Friction tests were performed under dry sliding conditions against stainless steel 304 at nominal stresses of 1.42-4.25 MPa and sliding speeds of 0.5-1.25 m/s. Tribological data were collected using a custom-made pin-on-disk apparatus that measured the interface temperature and corresponding friction coefficient. Static tests were performed to demonstrate the functionality and reliability of the thermocouple wires-combined temperature sensor (TCTS). Each TCTS showed good linearity and sensitivity and very similar response times for the thermocouple and critical temperature during sliding friction.

Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures (마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석)

  • Gwon, H.;Kim, M. G.;Hur, H. L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.

Friction and Wear Characteristics of Silica/Epoxy Composites for various Particle Size (입자지름의 변화에 따른 실리카 복합재료의 마찰 및 마모 특성)

  • Koh, Sung-Wi;Kim, Hyung-Jin;Kim, Kae-Dong;Kim, Chang-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, the friction and wear characteristics of pure epoxy and silica-filled epoxy resin composites with average silica particle diameter of $6-33{\mu}m$ were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials against SiC abrasive paper were determined experimentally. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on diameter of the silica particle for all these composites. The sliding wear tests of the materials demonstrated that the friction coefficient and the wear rate of silica filled epoxy composites were lower than those of the pure epoxy. silica filled epoxy.

  • PDF

Effects of Tool Speed on Joining Characteristics during Friction Stir Spot Welding of Mg-alloy(AZ31B) Sheet (마그네슘합금(AZ31B) 판재의 마찰교반 점용접시 접합특성에 미치는 툴 속도의 영향)

  • Shin, Hyung-Seop;Jung, Yoon-Chul;Choi, Kwang
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.80-87
    • /
    • 2011
  • In this study, the friction stir spot welding (FSSW) of Mg alloy sheets has been tried using an apparatus devised with a CNC milling machine to give the precise control of joining condition including tool speed. The probe tool used is made of hard metal and composed of cylindrical shoulder and pin parts. The variation of morphologies formed after the friction stir spot welding depending on the plunge speed of the tool were investigated at each rpm of tool. The history of the temperature distribution and the vertical load induced during the spot welding with friction time were measured by using an Infrared Thermal Imager (THERMA CAMTM SC2000) and a loadcell located below the specimen fixture, respectively. Tensile-shear tests were also performed to evaluate the fracture load of welded specimens. In order to characterize the friction stir spot welding of Mg alloy sheets, the variation of the fracture load was discussed on micrographic observations, temperature distribution during the FSSW according to the plunge speeds of tool.

Friction Characteristics of the Tip Seal in a Scroll Compressor (스크롤 컴프레서 팁실의 마찰특성)

  • Jeong, Bong Soo
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.370-377
    • /
    • 2014
  • The basic elements in a rotary-type scroll compressor are two identical spiral scrolls containing refrigerant gas. The pressure variations in the compression pockets of a scroll compressor change the forces acting on the orbiting scroll, and these forces affect the dynamic behavior of the compression mechanism parts. To achieve high efficiency, using a self-sealing mechanism as a tip seal mechanism is very effective. Tip seals, which are placed on top of the scroll wraps, accomplish thrust sealing. This study calculates the friction force between the tip seal and the side plate of a scroll compressor using the numerical model considered in the Reynolds equation. The calculated friction force is verified by an experiment using a pin-on-disk apparatus. A hydraulic servo valve that controls the pressure of the oil hydraulic cylinder applies the normal load for the test, and a DC servo motor controls the sliding velocity of the disk. The friction force and normal load are measured by the force sensors attached to the supporting parts. The results show that the theoretical and experimental results are similar and that the friction is influenced by the viscosity of the oil and the sliding velocity of the scroll.

Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring (디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성)

  • Jang, Jeong-Hwan;Kim, Jung-Hoon;Kim, Chang-Hee;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

Weldability and properties of lap joints by pin FSW with 1050 Al sheet (1050 Al판재의 핀 마찰 교반용접에 의한 실험적 연구)

  • Jang, Seok-Ki;Park, Jong-Seek;Han, Min-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.394-400
    • /
    • 2007
  • The properties and weldability of lap joints by PFSW with 1050 Al sheet was investigated according to tool shape. dimension and welding condition. Tensile shear test was carried out for lap jointed specimen, and the hardness in the joint regions was examined. Moreover interfacial joining length, metallograph and failure location of the lap-jointed cross section were discussed. Two tool types were a simple cylindrical type and a notched cylindrical type. Under joining conditions such as plunging depth of 2.2mm. rotating speed of 1600rpm and dwelling time of 3s, the tensile shear strength of lap-jointed specimen by the notched type tool was superior to that by simple cylindrical type tool. The maximum tensile shear load of lap jointed specimen was 5807N. Optimal dimensions of the notched type tool were as follows : diameters of the shoulder and pin were $18{\phi}mm$ and $10{\phi}mm$, and pin length was 2.2mm.

A study on the development of thin-walled metal bearing for the large-sized slow speed diesel engines. (대형저속 디젤엔진용 박판형 메탈 베어링의 국산화 개발에 관한 연구)

  • 김영주;조문제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.61-71
    • /
    • 1995
  • Nowadays the thin-walled metal bearing, which is made seperately from the bearing housing and has the ratio of wall thickness/bearing diameter being less than 1/30, are used in many newly developed large-sized slow speed diesel engines for the purpose of upgarding lubication performance and easy maintenance according to the trends of increasing output per cylinder and lowering engine speed. The type of this bearing has been used generally in many small-sized high speed engines applied for automobile, high speed craft and industrial power generation systems since 1950s. But the tranditional thick-walled bearings, whice are linned white metal on the bearing housing directly, have been installed on the large and slow speed engines until 1990s due to the easy manufacturing procedures. In this study we have calculated optimum dimensions of the metal bearing, fabricated special zigs for crush measurement, model test machine, 2 sets of specimens.(crosshead pin bearing, $\phi$818*552*20mm) for B & W 6S70MC(20, 940*88rpm), and evaluated metal constact phenomena of white metal, its friction coefficient, temparature rise through the model test and field performance test.

  • PDF

Moment Evaluations of Gimbal Expansion Joints for Liquid Rocket Engine Propellant Pipes (액체로켓엔진 배관 김발 신축 이음 모멘트 평가)

  • Yoo, Jaehan;Moon, Ilyoon;Lee, Soo Yong;Choi, Chunghyeon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2013
  • The gimbal expansion joint for the pipe line of a liquid rocket engine undergoes high pressure and cyclic rotational displacement loadings. In present study, the moment analyses and tests of the internal-type gimbal expansion joint for the engine were performed. The moment components due to spring stiffness, friction and lateral force were obtained using a analytic method and their sums at low and high pressures were compared with the test results. Also, applying a $MoS_2$ dry film lubricant to the pin of a external hinge expansion joint, it is tested that the galling of the pin was removed and the friction coefficient was decreased for low pressures.