• 제목/요약/키워드: Friction hinge

검색결과 20건 처리시간 0.023초

자동 닫힘 기능을 갖는 마찰힌지 개발에 관한 연구 (A Study on the Development of Friction Hinge with Automatic Closed Function)

  • 예상돈;민병현
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.107-114
    • /
    • 2014
  • A friction hinge system which moves without power was designed and developed using the principle of friction force, which is caused by interference between the inner diameter of a silicon cap and the outer diameter of a cylindrical roller bearing with one-way rotation in a counterclockwise direction. The system was applied to the lid of buffet ware, which moved up by external force and moved down by gravitational force. However, design conditions which included a rotation angle of the hinge of more than 80 degrees and a closing time of more than 20 seconds were required when the lid of the buffet ware closed due to gravitational force. The design safety of the friction hinge body connected to the lid of the buffet ware from the hinge system was checked on the basis of structural, fatigue and thermal analyses. The material of the shaft, cap and flange among the hinge elements was changed to polyethylene from steel to reduce the weight of the friction hinge system. An injection molding simulation was performed and injection molds of the shaft, cap and flange were created. The weight of the hinge system was decreased from 805g to 219g.

Flutter Characteristics ofAircraft Wing Considering Control Surface and Actuator Dynamics with Friction Nonlinearity

  • Lee, Seung-Jun;Lee, In;Shin, Won-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.140-147
    • /
    • 2007
  • Whenever the hinge axis of aircraft wing rotates, its stiffness varies. Also, there are nonlinearities in the connection of the actuator and the hinge axis, and it is necessary to inspect the coupled effects between the actuator dynamics and the hinge nonlinearity. Nonlinear aeroelastic characteristics are investigated by using the iterative V-g method. Time domain analyses are also performed by using Karpel's minimum state approximation technique. The doublet hybrid method(DHM) is used to calculate the unsteady aerodynamic forces in subsonic regions. Structural nonlinearity located in the load links of the actuator is assumed to be friction. The friction nonlinearity of an actuator is identified by using the describing function technique. The nonlinear flutter analyses have shown that the flutter characteristics significantly depends on the structural nonlinearity as well as the dynamic stiffness of an actuator. Therefore, the dynamic stiffness of an actuator as well as the nonlinear effect of hinge axis are important factors to determine the flutter stability.

Seismic performance of a rocking bridge pier substructure with frictional hinge dampers

  • Cheng, Chin-Tung;Chen, Fu-Lin
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.501-516
    • /
    • 2014
  • The rocking pier system (RPS) allows the columns to rock on beam or foundation surfaces during the attacks of a strong earthquake. Literatures have proved that seismic energy dissipated by the RPS through the column impact is limited. To enhance the energy dissipation capacity of a RPS bridge substructure, frictional hinge dampers (FHDs) were installed and evaluated by shaking table tests. The supplemental FHDs consist of two brass plates sandwiched by three steel plates. The strategy of self-centering design is to isolate the seismic energy by RPS at the columns and then dissipate the energy by FHDs at the bridge deck. Component tests of FHD were first conducted to verify the friction coefficient and dynamic characteristic of the FHDs. In total, 32 shaking table tests were conducted to investigate parameters such as wave forms of the earthquake (El Centro 1940 and Kobe 1995) and normal forces applied on the friction dampers. An analytical model was also proposed to compare with the tested damping of the bridge sub-structure with or without FHDs.

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석 (A Study on the Stability and Mechanism of Three-Hinge Failure)

  • 문준식;박우정
    • 한국지반공학회논문집
    • /
    • 제33권4호
    • /
    • pp.5-15
    • /
    • 2017
  • 3힌지파괴(three-hinge failure)는 비탈면 방향과 평행한 절리와 그에 직교하는 절리로 구성된 암반비탈면에서 발생한다. 비탈면 설계 시 일반적으로 쓰이는 한계평형법과 유한요소법은 이러한 암반비탈면 내 3힌지파괴를 모사하기에는 어려움이 따른다. 따라서 본 연구에서는 3힌지파괴를 모사하기 위해 2차원 DEM 해석프로그램인 UDEC을 이용하여 풋월 비탈면에서 흔히 발생되는 3힌지파괴의 메커니즘 및 안정성에 미치는 영향 인자에 대하여 매개변수 분석을 연구하였다. 매개변수 분석은 암반절리(층면절리, 공액절리 등)의 구조 및 지하수위 조건 등을 변경하여 수행하였다. 수치해석 결과, 3힌지파괴를 유발하는 인자 중 지하수위의 영향이 가장 큰 것으로 나타났으며, 층면절리 및 기저부절리의 마찰각 변화에 따라 안전율과 파괴 형태가 다르게 나타나는 것으로 분석되었다. 본 연구결과를 통해 비탈면 보강을 포함한 풋월 비탈면의 최적설계 및 시공에 적용될 수 있을 것으로 판단된다.

4절 링크구조를 응용한 플랙셔 힌지 기반 모듈형 나노포지셔너 (Modularized Flexure-Hinge Nanopositioner Based on Four-Bar-Link-Mechanism)

  • 채기운;배진현;정영훈
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.851-858
    • /
    • 2011
  • Nanopositioning technologies play an important role in the progress of electronics, optics, bio-engineering and various nano-scale technologies. As a result, various practical nanopositioning methods have been successfully introduced. Flexure mechanism is a valuable method in nanopositioning because of smooth and friction-free motion and the infinitesimal movement near to sub-nm. In this study a modularized nanopositioner based on parallelogram four-bar linkage structure with right-circular flexure hinge was developed. The positioning performance of a single axis nanopositioner and a XY nanopositioner which was extended from single axis one were demonstrated using control experiments. Consequently, it was shown that the developed single axis nanopositioner possessed high performance and could be extended to various multi-axis nanopositioners.

자동차 클러치 다이어프램 스프링 하중 특성 및 민감도 해석 (Load Characteristics and Sensitivity Analysis for an Automotive Clutch Diaphragm Spring)

  • 이병수
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.54-59
    • /
    • 2006
  • An analytical solution for deflection-load characteristics of a conical disk spring used especially in the automotive manual transmission clutch applications is proposed in order to take into account the effects of friction and large deformation. The conical disk spring, or the diaphragm spring, has a hinge support, an application point of release load at the tip of the fingers and an application point of clamp load near but inside the outer perimeter of the conical disk spring. The friction coefficient is assumed to be a constant regardless of the speed of deflection and the magnitude of loads. Comparison with experimental shows a good agreement with the analytical prediction. Also, the sensitivity of the clamp load due to variations in the geometrical parameters of the conical disk spring is calculated and discussed.

Modeling of cyclic bond deterioration in RC beam-column connections

  • Picon-Rodriguez, Ricardo;Quintero-Febres, Carlos;Florez-Lopez, Julio
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.569-589
    • /
    • 2007
  • This paper presents an analytical model for RC beam-column connections that takes into account bond deterioration between reinforcing steel and concrete. The model is based on the Lumped Damage Mechanics (LDM) theory which allows for the characterization of cracking, degradation and yielding, and is extended in this paper by the inclusion of the slip effect as observed in those connections. Slip is assumed to be lumped at inelastic hinges. Thus, the concept of "slip hinge", based on the Coulomb friction plasticity theory, is formulated. The influence of cracking on the slip behavior is taken into account by using two concepts of LDM: the effective moment on an inelastic hinge and the strain equivalence hypothesis. The model is particularly suitable for wide beam-column connections for which bond deterioration dominates the hysteretic response. The model was evaluated by the numerical simulation of five tests reported in the literature. It is found that the model reproduces closely the observed behavior.

Influence of steel-concrete interaction in dissipative zones of frames: I - Experimental study

  • Ciutina, Adrian;Dubina, Dan;Danku, Gelu
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.299-322
    • /
    • 2013
  • In the case of seismic-resistant composite dual moment resisting and eccentrically braced frames, the current design practice is to avoid the disposition of shear connectors in the expected plastic zones, and consequently to consider a symmetric moment or shear plastic hinges, which occur only in the steel beam or link. Even without connectors, the real behaviour of the hinge may be different from the symmetric assumption, since the reinforced concrete slab is connected to the steel element close to the hinge locations, and also due to contact friction between the concrete slab and the steel element. The paper presents the results and conclusions of experimental tests on composite portal eccentrically braced frames and beam-to-column moment-resisting joints, carried out within the CEMSIG Research Centre of the Politehnica University of Timisoara, in order to check the validity of the assumption stated above. Reference steel and composite specimens with and without connectors in the plastic zones have been tested under monotonic and cyclic seismic type loading.

Influence of steel-concrete interaction in dissipative zones of frames: II - Numerical study

  • Danku, Gelu;Dubina, Dan;Ciutina, Adrian
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.323-342
    • /
    • 2013
  • In the case of seismic-resistant composite dual moment resisting and eccentrically braced frames, the current design practice is to avoid the disposition of shear connectors in the expected plastic zones, and consequently to consider a symmetric moment or shear plastic hinges, which occur only in the steel beam or link. Even without connectors, the real behavior of the hinge may be different from the symmetric assumption since the reinforced concrete slab is connected to the steel element close to the hinge locations, and also due to contact friction between the concrete slab and the steel element. At a larger level, the structural response in the case of important seismic motions depends directly on the elasto-plastic behavior of elements and hinges. The numerical investigation presented in this study summarizes the results of elasto-plastic analyses of several steel frames, considering the interaction of the steel beam with the concrete slab. Several parameters, such as the inter-story drift, plastic rotation requirements and behavior factors q were monitored. In order to obtain accurate results, adequate models of plastic hinges are proposed for both the composite short link and composite reduced beam sections.