• Title/Summary/Keyword: Friction factor equation

Search Result 87, Processing Time 0.027 seconds

Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle (모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.49-63
    • /
    • 2014
  • Bearing capacity factor $N_{\gamma}$ and shape factor were studied for rigid strip and circular footings with a rough base on sand by numerical modelling considering the effect of dilation angle. The numerical model was developed with an explicit finite difference code. Loading procedures and interpretation methods were devised in order to shorten the running time while eliminating the exaggeration of the reaction caused by the explicit scheme. Using the Mohr-Coulomb plasticity model with associated (${\psi}={\phi}$) and nonassociated (${\psi}$ < ${\phi}$) flow-rules, the bearing capacity factor $N_{\gamma}$ was evaluated for various combinations of internal friction angles and dilation angles. Bearing capacity factor decreased as the dilation angle was reduced from the associated condition. An equation applicable to typical sands was proposed to evaluate the relative bearing capacity for the nonassociated condition compared to the associated condition on which most bearing capacity factor equations are based. The shape factor for the circular footing varied substantially when the plane-strain effect was taken into account for the strip footing. The numerical results of this study showed closer trends with the previous experimental results when the internal friction angle was increased for the strip footing. Discussions are made on the reason that previous equations for the shape factor give different results and recommendations are made for the appropriate design shape factor.

Influence of an Aspect Ratio of Rectangular Channel on the Cooling Performance of a Multichip Module

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.350-357
    • /
    • 2000
  • Experiments were performed by using PF-5060 and water to investigate the influence of an aspect ratio of a horizontal rectangular channel on the cooling characteristics from an in-line $6{\times}1$ array of discrete heat sources which were flush mounted on the top wall of the channel. The experimental parameters were aspect ratio of rectangular channel, heat flux of simulated VLSI chip, and channel Reynolds number. The chip surface temperatures decreased with the aspect ratio at the first and sixth rows, and decreased more rapidly at a high heat flux than at a low heat flux. The measured friction factors at each aspect ratio for both water and PF-5060 gave a good agreement with the values predicted by the modified Blasius equation within ${\pm}7%$. The Nusselt number increased as the aspect ratio decreased, but the increasing rate of Nusselt number reduced as the aspect ratio decreased. A 5:1 rectangular channel yields the most efficient cooling performance when the heat transfer and pressure drop in the test section were considered simultaneously.

  • PDF

Transformation of Irregular Waves in Shallow Water (천해에서 불규칙파의 변이)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.212-220
    • /
    • 1993
  • A numerical model for the transformation of irregular waves in a coastal area is developed, which takes account of shoaling, refraction, diffraction, bottom friction and wave breaking. The governing equations are the usual energy conservation equation and kinematic conservation equations, but to consider the diffraction effects additional terms are included in the usual kinematic conservation or wave number equations. A linear superposition technique is used to represent the spectral formation. and an explicit formula is developed for the estimation of friction factor of irregular waves. A breaking criterion of component waves, which is the modified form of the Kitaigorodskii saturation relation, is employed to restrict the growth of shoaling waves in very shallow waters. The model was applied to a laboratory test and satisfactory agreement was obtained between the computation and measurement.

  • PDF

Hydraulic Design of Natural Gas Transmission Pipeline in the Artic Area (극한지 장거리 천연가스 배관의 유동 설계)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Hydraulic analysis of the natural gas transmission pipeline is to determine whether adequate flow can be sustained throughout the design life of pipeline under all expected flow conditions. Many factors have to be considered in the hydraulic design of long-distance pipelines, including the nature, volume, temperature and pressure of fluid to be transported, the length and elevation of pipeline and the environment of terrain traversed. This study reviewed the available gas operation data provided by pipeline construction project in the arctic area and discussed the gas properties such as viscosity and compressibility factor that influence gas flow through a pipeline. Pipeline inside diameter was calculated using several flow equations and pipeline wall thickness was calculated from Barlow's equation applying a safety factor and including the yield strength of the pipe material. The AGA flow equation was used to calculate the pressure drop due to friction, gas temperature and pipeline elevation along the pipeline. The hydraulic design in this study was compared with the report of Alaska Pipeline Project.

Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft in Cohesionless Soils : Study on the Application by Model Test (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압 : 적용성 연구)

  • 천병식;신영완;문경선
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.75-88
    • /
    • 2004
  • It is known that the earth pressure acting on the cylindrical retaining wall in cohesionless soils is small than that acting on the retaining wall in plane strain condition due to three dimensional arching effect. In this study, the earth pressure equation considering the earth pressure decrease by horizontal and vertical arching effects, overburden, wall friction, and failure surface slope is proposed. For the purpose of verifying the applicability of proposed equation, model test is performed with apparatuses that can control wall displacement, wall friction, and wall shape ratio. Influence of each factor on the active earth pressure acting on the cylindrical retaining wall is analyzed according to the model test in constant wall displacement condition. The comparison of calculated results with measured values shows that the proposed equations satisfactorily predict the earth pressure distribution on the cylindrical retaining wall.

An Analytical Study on the Performance Analysis of a Unit-In-jector System of a Diesel Engine

  • Kim, Chul-Ho;Lee, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.146-156
    • /
    • 2003
  • A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO) ; the maximum pressure in the plunger chamber (P$\_$p/) and total amount of fuel injected into a cylinder per cycle (Q$\_$f/) at each operational condition. The result shows that the average error rate (%) of P$\_$p/ and Q$\_$f/ are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.

Analysis of forced convective laminar film boiling heat transfer on vertical surface (垂直平板에서의 强制對流 膜沸騰 流動의 熱傳達解析)

  • 이규식;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.425-436
    • /
    • 1987
  • Accurate predictions of heat transfer coefficient of vertical laminar film-boiling are very important in many engineering applications. There are many predictions, however they are not exact as yet, since they have used the assumption of constant thermodynamic properties in the analysis. In this paper, heat transfer of vertical film boiling was analysized by Runnge Kutta method using veriable thermodynamic properties. 1/4 interval method was exployed for the prediction of unknown wall boundary condition. Numerical computations were performed with varying the wall temperature and the free stream velocity of liquid. Results show that assumption of constant thermodynamic properties induced considerable error in predicting the heat transfer coefficient, friction factor, film thickness, and critical length for transition to turbulent flow. Comparision of the predicted heat transfer coefficient of present analysis with that from Bromley's correlation shows that the use of general latent heat in Bromely equation instead of modified latent heat is more desireable since it makes the coefficient of Bromley equation into constant.

Simplified Design of Commercial Pipes with Considering Secondary Losses (부차 손실을 고려한 상용관로의 간편 설계)

  • Yu, Dong-Hun;Jeong, Won-Guk
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.31-43
    • /
    • 2001
  • The friction factor of commercial pipe varies with wide range depending on pipe type and pipe size. Various methods can describe the wide variation of friction factor with good accuracy, but they normally require an iteration process even for solution of a simple case. Power law can result in an explicit form of solver so that the power law is rigorously employed for the development of direct solution technique. The parameters used in the present form of power law are allowed to haute some variation with pipe size and Reynolds number as well as pipe type for wider coverage with good accuracy, while Hazen-Williams equation permits limited variation which accounts only for the roughness or the pipe type. Furthermore secondary loss is considered in the development of explicit equations for design of commercial pipes.

  • PDF

Numerical Optimization of the Shape of Mixing Vane in Nuclear Fuel Assembly (핵연료 집합체 혼합날개형상의 수치최적설계)

  • Seo Jun-Woo;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.929-936
    • /
    • 2004
  • In the present work, shape of the mixing vane in Plus7 fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. Standard $k-{\epsilon}$ model is used as a turbulence closure. The Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of friction loss. Bend angle and base length of mixing vane are selected as design variables. Thermal-hydraulic performances for different shapes of mixing vane have been discussed, and optimum shape has been obtained as a function of weighting factor in the objective function.

A Study on Thermal Deformation Volume of Motorcycle Brake Disk using Regression Analysis (회귀분석에 의한 모터싸이클 브레이크 디스크의 열변형량에 관한 연구)

  • Ryu, Mi-Ra;Byoun, Sang-Min;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.102-107
    • /
    • 2009
  • The thermal deformation volume of motorcycle break disk was studied using a disk-on-pad type friction tester. Thermal deformation volume of motorcycle break disk have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal deformation volume. In this study, the thermal deformation volume with ANSYS workbench are obtained by application of temperature from mechanical test. From this study, the result was shown that the motorcycle break disk with ventilated hole 3 have the most excellent thermal deformation characteristics. The regression equation with frictional factors which have a trust rate of 95% for prediction of thermal deformation volume of motorcycle break disk was composed.