• Title/Summary/Keyword: Friction efficiency

Search Result 431, Processing Time 0.023 seconds

A Study on the Negative Skin Friction Depending upon the Locations of Piles in a Group Using Model Test (모형시험을 통한 무리말뚝 내 말뚝의 위치별 부주면마찰력에 관한 연구)

  • Lim, Jong-Seok;Park, Jong-Hee;Sim, Jong-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.923-932
    • /
    • 2009
  • Generally most of pile foundations are constructed with group pile rather than single pile. The study on efficiency and bearing capacity which are major elements for rational design of this group pile has been actively progressed, whereas there are truly only a few studies of negative skin friction working on group pile due to the consolidation of ground. The purpose of this study is to determine, among the elements of negative skin friction applied to pile, the occurrence modality of negative skin friction at center, side, and corner of $3{\times}3$ group pile using model test and, based on those observations, to propose the effective design direction of group pile.

  • PDF

REAL-TIME QUALITY EVALUATION OF FRICTION WELDING OF MACHINE COMPONENTS BY ACOUSTIC EMISSION (음향방출법(AE)에 의한 기계요소재의 마찰용접 품질 실시간 평가)

  • SAE-KYOO OH
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.3-20
    • /
    • 1995
  • Development of Real-Time Quality Evaluation of Friction Welding by Acousitc Emission : Report 1 ABSTRACT : According as the friction welding has been increasingly applied in manufacturing various machine components because of its significant economic and technical advantages, one of the important concerns is the reliable quality monitoring method for a good weld quality with both joint strength and toughness in the process of its production. However no reliable nondestructive test method is available at present to determine the weld quality particularly in process of production. So this paper presents an experimental examination and quantitative analysis for the real-time evaluation of friction weld quality by acoustic emission, as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was confirmed, through this study, that AE techniques can be reliably applied to evaluating the friction weld qualify with 100% joint strength, as the cumulative AE counts occurring during welding period were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds. Real-Time Evaluation of Automatic Production Quality Control for Friction Welding Machine : Report 2 Abstract : Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

  • PDF

Performance Characteristic of a Pipe Type Centrifugal Pump (파이프형 원심펌프의 성능특성에 관한 실험적 연구)

  • Yu, HyeonJu;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.32-36
    • /
    • 2012
  • The positive displacement pump and the regenerative pump are widely used in the range of low specific speed, $n_s{\leq}100$[rpm, m3/min, m]. The positive displacement pump is not suitable for miniaturization and operation in high rotational speed. The regenerative pump has a problem with large leakage flow and low efficiency. While the centrifugal pump has advantages of high efficiency, miniaturization and high rotational speed, efficiency drops sharply with decrease in specific speed. Therefore the purpose of this study is to design a new type of centrifugal pump that has advantages of centrifugal pumps in operation in low specific speed. The name of this new type of pump was called 'Pipe type centrifugal pump', since the flow path through the impeller is simple circular pipe. Due to the simple shape of impeller, the manufacturing process is simple and cost is low. There is strong jet flow at the outlet of the impeller. This jet induces flow path loss, meridional dynamic pressure loss and mixing loss. Large disk friction makes the efficiency be limitted in the range of low specific speed. Even though the loss and the low efficiency, 'Pipe type centrifugal pump' represents stable performance, affordable pressure ratio and efficiency better than that of other low specific speed pumps.

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

Seismic response control of a building complex utilizing passive friction damper: Analytical study

  • Ng, C.L.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.85-105
    • /
    • 2006
  • Control of structural response due to seismic excitation in a manner of coupling adjacent buildings has been actively developed, and most attention focused on those buildings of similar height. However, with the rapid development of some modern cities, multi-story buildings constructed with an auxiliary low-rise podium structure to provide extra functions to the complex become a growing construction scheme. Being inspired by the positively examined coupling control approach for buildings with similar height, this paper aims to provide a comprehensive analytical study on control effectiveness of using friction dampers to link the two buildings with significant height difference to supplement the recent experimental investigation carried out by the writers. The analytical model of a coupled building system is first developed with passive friction dampers being modeled as Coulomb friction. To highlight potential advantage of coupling the main building and podium structure with control devices that provide a lower degree of coupling, the inherent demerit of rigid-coupled configuration is then evaluated. Extensive parametric studies are finally performed. The concerned parameters influencing the design of optimal friction force and control efficiency include variety of earthquake excitation and differences in floor mass, story number as well as number of dampers installed between the two buildings. In general, the feasibility of interaction control approach applied to the complex structure for vibration reduction due to seismic excitation is supported by positive results.

Numerical simulation for the gas exchange process of 4-cycle single cylinder diesel engine (단기통 4행정 디젤기관의 흡배기과정 시뮬레이션 연구)

  • 이재순;이재규
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.30-40
    • /
    • 1990
  • The computer program for the prediction of the volumetric efficiency of 4-cycle single cylinder diesel engine was developed using the characteristic method which considers the effects of friction, heat transfer and specific heat. The results of calculation by this program are as follows; 1. The back flowing was arised at the beginning and the closing stage of inlet valve, and the back flowing mass and velocity decrease as the engine speed increases. 2. The volumetric efficiency varies with the engine speed and the length of inlet manifold. There was an optimum length of inlet manifold for each specified engine speed. 3. The pressure fluctuation and friction effect in the inlet manifold became very important factors for the determination of the volumetric efficiency.

  • PDF

Optimum Design of the Screw extruder using Thermo-mechanical Analysis

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.28-33
    • /
    • 2001
  • Screw conveyors are used extensively in industrial for conveying and elevating materials. Despite their apparent simplicity, the mechanics of the conveying action is very complex. so many engineers depend on experiential data. Capacities of screw are pumping, steady flow of polymer melts, steady volumetric throughput etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. by computation volumetric efficiency increases as rotating velocity increases and decreases as friction coefficient increases. also it decreases with short pitch length. and double flight screw is more effective than single flight screw. The temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on volumetric throughput efficiency of the screw and thermo-mechanical characteristics of screw.

  • PDF

The optimum Design of the Multi-flight Screw using Finite Element Analysis (다중날을 가진 스크류의 최적화 설계)

  • 최동열;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.248-256
    • /
    • 2001
  • Capacities of screw are pumping, steady flow of polymer melts, volumetric efficiency, steady volumetric throughout etc. they are affected by geometry of screw, heat flux, pressure on inside barrel, rotating velocity, friction coefficient at screw surface etc. Also the temperature of polymer melts by heating pad and injection pressure play a very important role in the injection molding machine. by computation volumetric efficiency increases as rotating velocity increases, flight number increses, and decreases as friction coefficient increases. but volumetric throughout is different :s flight number increases with helix angle variability. so in this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand what design factors influence on thermo-mechanical characteristics of screw.

  • PDF

Influences of the Surface Pollution Cause by the Marine Growth on Ship Hulls on Engine Performance and Output (선체 해양생물의 선저오염이 엔진성능과 출력에 미치는 영향)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.399-404
    • /
    • 2015
  • The cost of fuel in ships has recently increased due to a rapid increase in international oil prices and international restrictions regarding the greenhouse effect generated from the burning of fuel. Therefore, different methods for changing the hull designs for improving energy efficiency, developing coating for reducing friction resistances, developing additives for improving engine thermal efficiency, and low-speed operation for reducing fuel consumption have been considered. The developments of high-speed, large-scale, and energy-saving vessels are deemed essential to adapt to the recent high oil price era. Therefore, it is important to analyze Precisely the qualitative and quantitative changes in the resistance value of the local areas of the hull surface. In this study, the engine performance before and after docking was analyzed to examine friction resistance caused by marine growth on the hull as a basic study for improving the energy efficiency. The result was then presented by comparing it with the previous data for 2.5 years between docks to investigate the performance of the main engine, the change in friction resistances and loads, the fuel consumption and ship speed.

Friction Characteristic of SCM44 Steel using Grease Lubricants (그리스 윤활유의 종류에 따른 SCM44의 마찰특성)

  • Kwon, Soon-Goo;Kwon, Soon-Hong;Kim, Won-Kyung;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.917-926
    • /
    • 2020
  • Friction mechanisms is a very important role in the industrial machinery. However, many experiments have been conducted to reduce the loss of energy resources and parts used due to friction because the friction force adversely affects parts, efficiency, noise, and the like of the power unit. Therefore, in this study, the friction coefficient according to the characteristics of the lubricant was measured to find out which Grease Lubricant maintains the low friction coefficient without being most affected by external conditions. A total of five grease lubricants were tested in this study: GHP CAL 301, GHP EP 2, GHP KG 10, GHP HPG 2, and GHP HTG 2. And the friction coefficient was conducted by changing the load conditions (2, 4, 6, 8, 10N) and rotational speed (24, 48, 67, 86, 105, 124, 143, 162vrpm) using a pin-on-disk wear test system. Also, duty number were calculated. As a result, it was confirmed that in all grease lubricants, the speed did not significantly affect the friction coefficient, and it was confirmed that in all lubricants, the size of the friction coefficient decreased as the load increased from a small load to a large load. In addition, it was determined from the experimental results that GHP EP 2 is the most suitable as a grease lubricant and GHP CAL 301 is not the most suitable.