• Title/Summary/Keyword: Freundlich model

Search Result 307, Processing Time 0.026 seconds

Kinetic and Equilibrium Study of Lead (II) Removal by Functionalized Multiwalled Carbon Nanotubes with Isatin Derivative from Aqueous Solutions

  • Tahermansouri, Hasan;Beheshti, Marzieh
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3391-3398
    • /
    • 2013
  • The carboxylated multiwall carbon nanotubes (MWCNT-COOH) and functionalized with isatin derivative (MWCNT-isatin) have been used as efficient adsorbents for the removal of lead (Pb) from aqueous solutions. The influence of variables including pH, concentration of the lead, amount of adsorbents and contact time was investigated by the batch method. The adsorption of the lead ions from aqueous solution by modified MWCNTs was studied kinetically using different kinetic models. The kinetic data were fitted with pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The sorption process with MWCNT-COOH and MWCNT-isatin was well described by pseudo-second-order and pseudo-first-order kinetics, respectively which it was agreed well with the experimental data. Also, it involved the particle-diffusion mechanism. The values of regression coefficient of various adsorption isotherm models like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The Langmuir isotherm was found to best represent the measured sorption data for both adsorbent.

Removal Characteristics of Strontium and Cesium tons by Zeolite Synthesized from Fly Ash (석탄회로 합성한 제올라이트에 의한 Sr(II) 및 Cs(I) 이온의 제거 특성)

  • 감상규;이동환;문명준;이민규
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1061-1069
    • /
    • 2003
  • The adsorption behaviors of strontium and cesium ions on fly ash, natural zeolites, and zeolites synthesized from fly ash were investigated. The zeolites synthesized from fly ash had greater adsorption capabilities for strontium and cesium ions than the original fly ash and natural zeolites. The maximum adsorption capacity of synthetic zeolite for strontium and cesium ions was 100 and 154 mg/g, respectively, It was found that the Freundlich isotherm model could fit the adsorption isotherm. The distribution coefficients (K$\_$d/) for strontium and cesium ions were also calculated from the adsorption isotherm data, The distribution coefficients decreased with increasing equilibrium concentration of strontium and cesium ions in solution. By studying the removal of cesium and strontium ions in the presence of calcium, magnesium, sodium, potassium, sulfate, nitrate, nitrite, and EDTA (in the range of 0.01 - 5 mM) it was found that these coexistence ions competed for the same adsorption sites with strontium and cesium ions.

Oxygen Adsorption Process on ZnO Single Crystal

  • 전진;한종수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1175-1179
    • /
    • 1997
  • The adsorption of oxygen on ZnO was monitored by measuring the capacitance of two contacting crystals which have depletion layers originated from the interaction between oxygen and ZnO at 298 K-473 K. An admission of oxygen to the sample induced an irreversible increase in the depth and the amount of adsorbed oxygen was less than 0.001 monolayer in the experimental condition. The relation between pressure of oxygen and variation of the depth was tested from the view point of Langmuir or Freundlich isotherm. Using Hall effect measurement and kinetic experiment, a model equation on the adsorption process was proposed. From the results, it was suggested that oxygen adsorption depended on the rate of electron transfer from ZnO to oxygen while the amount of adsorbed oxygen was kinetically restricted by the height of surface potential barrier.

Optimization of methylene blue adsorption by pumice powder

  • Cifci, Deniz Izlen;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.37-50
    • /
    • 2016
  • The main objective of this study is to evaluate adsorptive removal of Methylene Blue (MB) dye from aqueous solution using pumice powder. The effects of pH, adsorption time, agitation speed, adsorbent dose, and dye concentrations on dye adsorption were investigated. Process kinetics and isotherm model constants were determined accordingly. The results showed that adsorbent dose, dye concentration and agitation speed are the important parameters on dye adsorption and the removal of MB did not significantly change by varying pH. A total adsorption process time of 60 min was observed to be sufficient to effectively remove 50 mg/L MB concentration. The MB adsorption data obeyed both pseudo first order and second order kinetic models. Adsorption of MB by pumice fitted well both Langmiur and Freundlich isotherms ($R^2{\geq}0.9700$), except for 150 rpm agitation speed that system fitted only Langmiur isotherm. The results of this study emphasize that pumice powder can be used as a low cost and effective adsorbent for dye removal.

Biosorption Characteristics of Lead (II) Using Zoogloea ramigera 115SLR (Zoogloea ramigera 115SLR을 이용한 납 생물흡착특성)

  • Kim, Seoung-Hyun;Song, Hoon;Son, Sukil;Lim, In-Gweon;Chung, Wook-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2006
  • Biosorption characteristics were investigated at various temperature and pH conditions in order to establish lead(II) removal using Zoogloea ramigera 115SLR. Biosorption equilibrium isotherms and kinetics were obtained from batch experiments. The Freundlich and Langmuir model could be described the biosorption equilibrium of lead(II) on Z. ramigera 115SLR, Ca-alginate bead and immobilized Z. ramigera 115SLR. The maximum biosorption capacity of Z. ramigera 115SLR increased from 325 to 617mg $pb^{2+}/g$ biomass as temperature increased from 288.15 K to 308.15K from the Langmuir model. Fixed-bed column breakthrough curves for lead(II) removal were also obtained. For regeneration of the biosorbent, complete lead(II) desorption was achieved using 5mM HCl in fixed-bed column. This study shows the possibilities that well-treated immobilized Z. ramigera 115SLR with the mechanical intensity like TEOS (Tetraethyl orthosilicate) treatment and the optimum acid solution for desorption can be used for the effective treatment for lead(II) containing wastewater.

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • Gholitabar, Soheila;Tahermansouri, Hasan
    • Carbon letters
    • /
    • v.22
    • /
    • pp.14-24
    • /
    • 2017
  • Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

Phosphate Removal of Aqueous Solutions using Industrial Wastes (산업폐기물을 이용한 수용액 중 인산염의 흡착 제거)

  • Kang, Ku;Kim, Young-Kee;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The present study was conducted to investigate phosphate removal from aqueous solution using industrial wastes, red mud (RM), acid treated red mud (ATRM) and converter furnace steel slag (CFSS). The chemical composition of adsorbents was analyzed using X-ray fluorescence (XRF). Batch experiments and elution experiments using water tank were performed to examine environmental factors that influences on phosphate removal. Kinetic sorption data of RM, ATRM, and CFSS were described well by the pseudo second-order kinetic sorption model, and equilibrium sorption data of all adsorbents obeyed Freundlich isotherm model. The adsorption capacities of adsorbents followed order: ATRM (7.06 mg/g)>RM (4.34 mg/g)>CFSS (1.88 mg/g). Increasing pH from 3 to 11, the amount of adsorbed phosphate on all RM, ATRM, and CFSS were decreased. The presence of sulfate and carbonate decreased the phosphate removal of RM and ATRM but did not influence on the performance of CFSS. The phosphate removal of RM, ATRM, and CFSS was greater in seawater than deionized water, resulting from the presence of cations in seawater. The water tank elution experiments showed that RM capping blocked the elution of phosphate effectively. It was concluded that the adsorbents can be successfully used for the removal of the phosphate from the aqueous solutions.

Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles

  • Safavi, Banafshe;Asadollahfardi, Gholamreza;Darban, Ahmad khodadadi
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • One of the methods of removing cyanide from wastewater is surface adsorption. We simulated the removal of cyanide from a synthetic wastewater in the presence of Titanium dioxide nano-particles absorbent uses VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of cyanide from synthetic wastewater applying simulation. Synthetic wastewater with a concentration of 100 mg/l of potassium cyanide was used for simulation. The amount of titanium dioxide was 1 g/l under the temperature of $25^{\circ}C$. The simulation was performed using an adsorption model of Freundlich and constant capacitance model. The results of simulation indicated that three factors including pH, nanoparticles of titanium dioxide and the primary concentration of cyanide affect the adsorption level of cyanide. The simulation and experimental results had a good agreement. Also by increasing the pH level of adsorption increases 11 units and then almost did not change. An increase in cyanide concentration, the adsorption level was decreased. In simulation process, rising the concentrations of titanium dioxide nanoparticles to 1 g/l, the rate of adsorption was increased and afterward no any change was observed. In all cases, the coefficient of determination between the experimental data and simulation data was above 0.9.

The Removal of Hexavalent Chromium from Aqueous Solutions Using Modified Holly Sawdust: Equilibrium and Kinetics Studies

  • Siboni, M. Shirzad;Samarghandi, M.R.;Azizian, S.;Kim, W.G.;Lee, S.M.
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • The removal of hexavalent chromium from aqueous solutions onto modified holly sawdust was studied at varying initial hexavalent chromium concentrations, adsorbent doses, pHs and contact times. The removal of hexavalent chromium from aqueous solutions increased with increasing adsorbent dosage and contact time. The percentage of hexavalent chromium removed from the aqueous solutions decreased with increasing hexavalent chromium concentration and pH of the solution. The kinetics of the adsorption of hexavalent chromium onto modified holly sawdust was analyzed using pseudo first-order and pseudo second-order models. The pseudo second-order model described the kinetics of adsorption of hexavalent chromium. The Langmuir and Freundlich isotherm models were used for modeling of the adsorption equilibrium data. The Langmuir isotherm model well described the equilibrium data for the removal of hexavalent chromium by modified holly sawdust. The obtained maximum adsorption capacity was 18.86 mg/g at pH 7. The results showed that modified holly sawdust can be used as a low cost adsorbent for the treatment of aqueous solutions containing chromium.

Adsorption of chlorhexidine digluconate on acid modified fly ash: Kinetics, isotherms and influencing factors

  • Singh, Astha;Sonal, Sonalika;Kumar, Rohit;Mishra, Brijesh Kumar
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.205-211
    • /
    • 2020
  • Chlorhexidine digluconate (CHD) in the aquatic environment causes irreversible change to microbes, making them resistant to biodegradation, which needs remediation other than biological process. Adsorption study was performed for the removal of CHD on fly ash (FA) as a function of pH and ionic strength. Experimental result has been validated by characterization using Scanning electron microscopy, Fourier Transform-Infrared Spectroscopy and Brunauer-Emmett-Teller. CHD adsorption with FA showed an increasing trend with an increase in pH. Variation in pH proved to be an influential parameter for the surface charge of adsorbent and the degree of ionization of the CHD molecules. The adsorption capacity of CHD decreased from 23.60 mg g-1 to 1.13 mg g-1, when ionic strength increased from to M. The adsorption isotherms were simulated well by the Freundlich isotherm model having R2 = 0.98. The Lagergren's model was incorporated to predict the system kinetics, while the mechanistic study was better explained by pseudo-second order for FA. On the basis of operational conditions and cost-effectiveness FA was found to be more economical as an adsorbent for the adsorption of CHD.