• Title/Summary/Keyword: Freshwater flow

Search Result 128, Processing Time 0.033 seconds

Validation of Fresh-Saltwater Sharp-Interface Model Using Freshwater Lens Hydraulic Experiment (담수렌즈 수리모형을 이용한 담수-염수 경계면 수치모델의 검정)

  • Hong, Sung Hun;Park, Namsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.263-269
    • /
    • 2006
  • An optimization model was developed for groundwater development and management in coastal areas. The optimization model consists of coastal groundwater flow model and optimization techniques. The objective of this work is to validate sharp-interface model which is one of major components of the optimization model. A laboratory experimental model is built to simulate freshwater lens, i.e., layer of freshwater floating on top of saltwater, phenomena. Experimental results for the position of fresh-saltwater sharp-interface and the salinity in well are compared with numerical results. Average ratio of relative error is estimated approximately between 2.91% and 4.39%. And the numerical results are in good agreement with the laboratory results of water quality in well in addition to the position of sharp-interface. Accordingly the evaluation of coastal groundwater flow using sharp-interface model can produce reasonable results.

Evaluation of along-channel sediment flux gradients in an anthropocene estuary with an estuarine dam

  • Figueroa, Steven M.;Lee, Guan-hong;Chang, Jongwi;Schieder, Nathalie W.;Kim, Kyeongman;Kim, Seok-Yun;Son, Minwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.86-86
    • /
    • 2022
  • While estuarine dams can develop freshwater resources and block the salt intrusion, they can result in increased sediment deposition in the estuary. The mechanism of increased sediment deposition in an estuary with an estuary dam is not well understood. To fill this knowledge gap, 7 ADCP measurements of flow and suspended sediment concentration (SSC) were collected along-channel in an estuary with an estuarine dam over a neap-spring cycle. Flow and SSC were used to calculate the sediment flux and sediment flux gradients. The results indicated that the cumulative sediment fluxes at all stations were directed landward. The along-channel sediment flux gradient was negative, which indicated deposition along the channel. The landward mean-flow fluxes were dominant in the deep portion of the channel near the estuary mouth, whereas landward correlation fluxes were dominant in the shallow portion of the channel near the estuarine dam. The tides were the dominant forcing driving the sediment fluxes throughout the estuary.

  • PDF

Level and Fate of Arsenic(As) in the Namdae Stream (강릉 남대천 수계의 비소(As) 농도 분포 및 거동특성 연구)

  • Yoon, Yi-Yong;Kim, Kyung-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.149-157
    • /
    • 2000
  • This paper presents the first results of dissolved arsenic in the Kangnung Namdae stream. The distribution of As concentrations measured in 28 August (high water flow) and in 21 November 1997 (low water flow) differs from those of other metals measured during the same period; The concentrations of Doam-dam are lower than those of Obong-dam and accumulation in the downstream in the period of low water flow is not pronounced. The As concentration in the downstream under the low water flow is lower than under high water flow, reciprocally to other metals. Freshwater concentrations are comparable with those measured in pristine river and lower than the world average and the diffrence of concentrations measured during two period is minute. Therefore, the As concentrations in the Namdae stream are background level and the source of As contamination does not exist. In the mixing zone between the freshwater and Donghae seawater, As behave conservatively, indicating the absence of any significant removal or mobilization processes. A first estimation of total dissolved As input from Namdae stream to Donghae coastal sea shows 65.12 kg/yr.

  • PDF

Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease

  • Luo, Shaoxiang;Yan, Liming;Zhang, Xiaohua;Yuan, Li;Fang, Qin;Zhang, Yong-An;Dai, Heping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2135-2145
    • /
    • 2015
  • VP7, an outer capsid protein of grass carp reovirus (GCRV), was expressed and displayed on the surface of Saccharomyces cerevisiae for developing an efficient vaccine against hemorrhagic disease of grass carp. The result of flow cytometry analysis indicated that protein VP7 could be displayed on the surface of yeast cells after inducing with galactose. The expression of VP7 was confirmed by western blot analysis and further visualized with confocal microscopy. The specific antibodies against VP7 generated from mice were detectable from all immune groups except the control group, which was immunized with untransformed yeast cells. The displaying VP7 on glycosylation-deficient strain EBYΔMnn9 was detected to induce a relatively low level of specific antibody amongst the three strains. However, the antiserum of EBYΔM9-VP7 showed relative high capacity to neutralize GCRV. Further neutralization testing assays indicated that the neutralizing ability of antiserum of the EBYΔM9-VP7 group appeared concentration dependent, and could be up to 66.7% when the antiserum was diluted to 1:50. This result indicates that appropriate gene modification of glycosylation in a yeast strain has essential effect on the immunogenicity of a yeast-based vaccine.

Acute Toxicity Test of Heavy Metals Using Korean Freshwater Shrimp, Neocardina denticulata (국내 담수새우인 새뱅이 (Neocardina denticulata)를 이용한 중금속의 급성독성시험)

  • Ryu, Ji-Sung;Kim, Eun-Kyoung;Moon, Ye-Ryeon;Kim, Hyun-Mi;Kim, Hak-Joo;Choi, Kyung-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.171-175
    • /
    • 2007
  • Indigenous species means a species that is likely, due to historical presence, to occur at a specified site for some portion of its life span. Therefore, indigenous species can be useful as an indicator to assess environmental risk caused by hazardous chemicals in a specific site. So far a few toxicity studies using freshwater species which are indigenous to Korea have been carried out. In this study, a freshwater shrimp (Neocardina denticulata) indigenous to Korea was used for acute toxicity test of heavy metals. Neocardina denticulata were exposed to cadmium chloride $(CdCl_2)$, copper chloride $(CuCl_2)$ and zinc chloride $(ZnCl_2)$ using automatic flow-through system for 96 hours. The 96h LC50s were calculated as 0.043 $(0.042{\sim}0.045)mg\;CdCl_2/L,\;0.104(0.098{\sim}0.113)mg\; CuCl_2/L\;and\;2.021\;(1.633{\sim}2.594)mg\;ZnCl_2/L$. When compaired with some international standard species such as medaka(Oryzias latipes), Neocardina denticulata had high sensitivity. Therefore, this study suggested that Neocardina denticulata have possibilities for a sensitive test species to test heavy metal toxicity in aqua-system.

담수호 저층배수시설 방류구 위치선정을 위한 저층방류수 해양수중 혼합특성해석

  • Park, Yeong-Wook;Khu, Bon-Chung;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.272-277
    • /
    • 2005
  • Initial mixing characteristics in near field regions were analyzed by FLOW-3D, for analyzing mixing behavior of submerged discharge from freshwater lake in sea water. FLOW-3D model was applied to the region near Geum-ho dike for its verification. Simulation results from FLOW-3D were compared to the observed data for the verification periods. FLOW-3D showed resonable prediction results compared to the observed data, except underestimation in area near outfall. Particularly, FLOW-3D showed a good prediction for movement of buoyancy jets. In addition, FLOW-3D model was applied to the region near Saemangeum dike, which is to be constructed in near future. It was expected that the results of model application to Saemangeum area could provide substantial information in planning submerged discharge facilities. Based on the model applications to Saemangeum area, it was recommended that outfall should be located to the distance which gave an enough depth of outfall from water surface.

  • PDF

Characteristics of Sea Exchange in Gwangyang Bay and Jinju Bay considering Freshwater from Rivers (하천유출수를 고려한 광양만과 진주만의 해수교환 특성)

  • Hong, Doung;Kim, Jongkyu;Kwak, Inn-Sil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • At the center of the Noryang waterway, the Gwangyang bay area (including the Yeosu Strait) is located at the west, and the Jinju bay area (including Gangjin bay and Sacheon bay) is located at the east. Freshwater from several rivers is flowing into the study area. In particula,r the event of flood, great quantities freshwater flow from Seomjingang (Seomjin river) into the Gwangyang bay area and from Gahwacheon (discharge from Namgang Dam) into the Jinju bay. The Gwangyang and Jinju bay are connected to the Noryang waterway. In addition, freshwater from Seomjingang and Gahwacheon also affect through the Noryang waterway. In this study, we elucidated the characteristics of the tidal exchange rate and residence time for dry season and flood season on 50 frequency, considering freshwater from 51 rivers, including Seomjingang and Gahwacheon, using a particle tracking method. We conducted additional experiments to determine the effect of freshwater from Seomjingang and Gahwacheon during flooding. In both the dry season and flood season, the result showed that the particles released from the Gwangyang bay moved to the Jinju bay through the Noryang waterway. However, comparatively small amount of particles moved from the Jinju bay to the Gwangyang bay. Each experimental case, the sea exchange rate was 44.40~67.21% in the Gwangyang bay and 50.37~73.10% in the Jinju bay, and the average residence time was 7.07~15.36days in the Gwangyang bay and 6.45~12.75days in the Jinju bay. Consequently the sea exchange rate increased and the residence time decreased during flooding. A calculation of cross-section water flux over 30 days for 7 internal and 5 external areas, indicated that the main essential flow direction of the water flux was the river outflow water from Seomjingang flow through the Yeosu strait to the outer sea and from Gahwacheon flow through Sacheon bay, Jinju bay and the Daebang waterway to the outer sea.

Numerical Modeling of Seawater Intrusion in Coastal Aquifer (연안 대수층에서 해수침투 축성 해석)

  • 이연규;이희석
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • Coastal aquifers may serve as major sources fur freshwater. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. The management of groundwater in coastal acquifers means making decision as to the pumping rate and the spatial distribution of wells. Several numerical techniques for flow and solute transport simulation can provide the means to achieve this goal. As a basic study to predict the intrusion of seawater in coastal phreatic aquifers, the coupled flow and solute transport analysis was conducted by use of the 3-D finite element code, SWICHA. In order to understand how the location and the shape of freshwater-seawater transition zone were affected by the boundary conditions and hydrogeologic variables, parametric study was carried out.

Transverse variability of flow and sediment transport in estuaries with an estuarine dam

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.125-125
    • /
    • 2023
  • Estuarine dams are dams constructed in estuaries for reasons such as securing freshwater resources, controlling water levels, and hydroelectric power generation. These estuarine dams alter the flow of freshwater to the coastal ocean and the tidal properties of the estuaries which has implications for the estuaries' circulation and sediment transport. A previous study has analyzed the effect of estuarine dams on 1D (along-channel) circulation and sediment transport. However, the effect of estuarine dams on the transverse variability of along-channel and across-channel circulation and sediment transport has not been studied and is not known. In this study, a coupled hydrodynamic-sediment dynamic numerical model (COAWST) was used to analyze the transverse variability of along-channel and across-channel flow and sediment transport in estuaries with estuarine dams. The estuarine dam was found to change the 3D structure of circulation and sediment transport, and the result was found to depend on the estuarine type (i.e., strongly stratified (SS) or well-mixed (WM) estuary). The SS estuary had inflow in the channel and outflow over the shoals, consistent with estuarine circulation. Longer discharge interval reduced the estuarine circulation. The WM estuary had inflow over the shoals and outflow in the channel, consistent with tide-induced circulation. As the estuarine dam was located nearer to the estuary mouth, the tide-induced circulation was reduced and replaced with estuarine circulation. The lateral circualtion was the greatest in the tide-dominated estuaries. It was reduced and changed direction due to differential advection change as the dam was located nearer the mouth. Overall, the WM estuary transverse flow structure changed the most. Lateral sediment flux was important in all estuaries, particularly for transporting sediments to the tidal flats.

  • PDF

Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions (최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상)

  • Z-Hun Kim;Sun Woo Hong;Jinu Kim;Byungrak Son;Mi-Kyung Kim;Yong Hwan Kim;Jin Hyun Seol;Su-Hwan Cheon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.