• 제목/요약/키워드: Frequent Pattern Network

검색결과 36건 처리시간 0.024초

CONSTRUCTING GENE REGULATORY NETWORK USING FREQUENT GENE EXPRESSION PATTERN MINING AND CHAIN RULES

  • Park, Hong-Kyu;Lee, Heon-Gyu;Cho, Kyung-Hwan;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.623-626
    • /
    • 2006
  • Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.

  • PDF

빈발 패턴 네트워크에서 아이템 클러스터링을 통한 연관규칙 발견 (Discovering Association Rules using Item Clustering on Frequent Pattern Network)

  • 오경진;정진국;하인애;조근식
    • 지능정보연구
    • /
    • 제14권1호
    • /
    • pp.1-17
    • /
    • 2008
  • 데이터 마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템(item) 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량의 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 많이 제안되어 왔다. 연관규칙을 발견하기 위한 기존의 연구들은 모든 규칙을 찾아내지만, 사람이 분석하기에 너무 많은 규칙이 생성되기 때문에 규칙을 분석하기 위한 일 또한 많은 과정을 거쳐야 한다. 본 논문에서는 빈발 패턴 네트워크(Frequent Pattern Network)라 부르는 자료 구조를 제안하고 이를 활용하였다. 네트워크는 정점과 간선으로 구성되며 정점은 아이템을 표현하고, 간선은 두 아이템 집합을 표현한다. 아이템의 빈도수를 이용하여 빈발 패턴 네트워크를 구성하고, 아이템 사이의 유사도를 측정한다. 그리고 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 클러스터를 생성한다. 클러스터를 이용해 연관규칙을 생성하고 실험을 통해 Apriori와 FP Growth 알고리즘과의 성능을 비교를 하였다. 그 결과 빈발 패턴 네트워크에서 신뢰도 유사도를 이용하는 것이 클러스터의 정확성을 높여줌을 볼 수 있었다. 그리고 전통적인 방법과 비교를 통해 빈발 패턴 네트워크를 이용하는 것이 최소지지도에 유연성을 가짐을 알 수 있었다.

  • PDF

빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축 (Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules)

  • 이헌규;류근호;정두영
    • 정보처리학회논문지D
    • /
    • 제14D권1호
    • /
    • pp.9-20
    • /
    • 2007
  • 유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.

맵리듀스 기반 DFP-Tree를 이용한 클러스터링 알고리즘 (Clustering Algorithm using the DFP-Tree based on the MapReduce)

  • 서영원;김창수
    • 인터넷정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.23-30
    • /
    • 2015
  • 빅 데이터가 이슈화됨에 따라 데이터 분석의 결과를 기반으로 동작하는 많은 응용들이연구되고 왔고, 대표적인 응용들은 전자상거래 시스템의 상품 추천 서비스, 검색 엔진에서의 검색 서비스, 소셜 네트워크 서비스에서의 친구 추천 서비스 등이 있다. 본 논문은 기존의 데이터 마이닝 기법 중 데이터 집합에서 나타나는 유사한 패턴들을 마이닝하는 빈발 패턴 트리와 컴퓨터 과학의 이론에 기초한 결정트리를 결합하여 결정 빈발 트리 알고리즘을 제안한다. 이는 기존의 빈발 패턴 트리 알고리즘은 패튼 트리에서 패턴 생성에 대한 정확성은 보장되나 소셜 데이터처럼 다양한 패턴이 나타는 데이터에 대해서는 많은 수의 패턴들을 생성시켜 분석에 대한 어려움이 있어, 서브트리들과의 수렴 여부를 판단하는 모델로 변형시켜 문제를 개선한다. 또한 맵리듀스로 모델링하여 분산처리를 통한 고속 처리 알고리즘을 제시한다.

그래프 스트림에서 슬라이딩 윈도우 기반의 점진적 빈발 패턴 검출 기법 (Incremental Frequent Pattern Detection Scheme Based on Sliding Windows in Graph Streams)

  • 정재윤;서인덕;송희섭;박재열;김민영;최도진;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제18권2호
    • /
    • pp.147-157
    • /
    • 2018
  • 최근 네트워크 기술 발전과 함께 IoT 및 소셜 네트워크 서비스의 활성화로 인해 많은 그래프 스트림 데이터가 생성되고 있다. 이와 같은 그래프 스트림에서 객체들 사이의 관계가 동적으로 변화함에 따라 그래프의 변화를 탐지하거나 분석하기 위한 연구들이 진행되고 있다. 본 논문에서는 그래프 스트림에서 이전 슬라이딩 윈도우에서 검출한 빈발 패턴에 대한 정보를 이용해 빈발 패턴을 점진적으로 검출하는 기법을 제안한다. 제안하는 기법은 이전 슬라이딩 윈도우에서 검출된 패턴이 앞으로 몇 슬라이딩 윈도우동안 빈발할지 또는 빈발하지 않을지를 계산하여 빈발 패턴 관리 테이블에 저장한다. 그리고 이 값을 통해 다음 슬라이딩 윈도우에서는 필요한 계산만 수행함으로써 전체 연산량을 감소시킨다. 또한 패턴 간에 간선을 통해 연결되어있는 것만 하나의 패턴으로 인식함으로써 더 유의미한 패턴만을 검출한다. 본 논문에서는 제안하는 기법의 우수함을 보이기 위해 여러 성능 평가를 진행하였다. 그래프 데이터의 크기가 커지고 슬라이딩 윈도우의 크기가 커질수록 중복되는 데이터가 증가되기 때문에 기존 기법보다 빠른 처리 속도를 나타낸다.

랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가 (Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window)

  • 편광범;윤은일
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.101-107
    • /
    • 2014
  • 본 논문에서는 랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법을 분석하고 성능을 평가한다. 본 논문에서는 Lossy counting 알고리즘과 hMiner 알고리즘에 대한 분석을 진행한다. 최신의 랜드마크 알고리즘인 hMiner는 트랜잭션이 발생할 때 마다 빈발 패턴을 마이닝 하는 방법이다. 그래서 hMiner와 같은 랜드마크 기반의 빈발 패턴 마이닝을 온라인 마이닝이라고 한다. 본 논문에서는 랜드마크 윈도우 마이닝의 초기 알고리즘인 Lossy counting와 최신 알고리즘인 hMiner의 성능을 평가하고 분석한다. 우리는 성능평가의 척도로 마이닝 시간과 트랜잭션 당 평균 처리 시간을 평가한다. 그리고 우리는 저장 구조의 효율성을 평가하기 위하여 최대 메모리 사용량을 평가한다. 마지막으로 우리는 알고리즘이 안정적으로 마이닝이 가능한지 평가하기 위해 데이터베이스의 아이템 수를 변화시키면서 평가하는 확장성 평가를 수행한다. 두 알고리즘의 평가 결과로, 랜드마크 윈도우 기반의 빈발 패턴 마이닝은 실시간 시스템에 적합한 마이닝 방식을 가지고 있지만 메모리를 많이 사용했다.

Design of Geocasting in MANET using the Improved LBM

  • Lee, Cheol-Seung;Lee, Joon
    • 한국전자통신학회논문지
    • /
    • 제2권2호
    • /
    • pp.99-105
    • /
    • 2007
  • MANET(Mobile Ad-hoc network) have recently attracted a lot of attention in the research community as well as in industry. Although the previous research mainly focused on various of MANET in routing, we consider, in this paper, how to efficiently support applications such as variable geocasting basd on MANET. The goal of a geocasting protocol is deliver data packet to a group of nodes that are located within a specified geocasting region. Previous research that support geocast service in mobilie computing based on MANET have the non-optimization problem of data delivery path, overhead by frequent reconstruction of the geocast tree, and service disruption problem. In this paper, we propose the mobility pattern based geocast technique using variable service range according to the mobility of destination node and resource reservation to solve this problem. The experimental results show that our proposed mechanism has improved performance of Accessibility & Network Overhead than previous research.

  • PDF

파워스펙트럼 및 신경망회로를 이용한 기어박스의 결함진단 및 결함형태 분류에 관한 연구 (Fault Detection and Damage Pattern Analysis of a Gearbox Using the Power Spectra Density and Artificial Neural Network)

  • 이상권
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.537-543
    • /
    • 2003
  • Transient vibration generated by developing localized fault in gear can be used as indicators in gear fault detection. This vibration signal suffers from the background noise such as gear meshing frequency and its harmonics and broadband noise. Thus in order to extract the information about the only gear fault from the raw vibration signal measured on the gearbox this signal is processed to reduce the background noise with many kinds of signal-processing tools. However, these signal-processing tools are often very complex and time waste. Thus. in this paper. we propose a novel approach detecting the damage of gearbox and analyzing its pattern using the raw vibration signal. In order to do this, the residual signal. which consists of the sideband components of the gear meshing frequent) and its harmonics frequencies, is extracted from the raw signal by the power spectral density (PSD) to obtain the information about the fault and is used as the input data of the artificial neural network (ANN) for analysis of the pattern of gear fault. This novel approach has been very successfully applied to the damage analysis of a laboratory gearbox.

그래프 스트림 처리를 위한 점진적 빈발 패턴 기반 인-메모리 압축 기법 (In-memory Compression Scheme Based on Incremental Frequent Patterns for Graph Streams)

  • 이현병;신보경;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제22권1호
    • /
    • pp.35-46
    • /
    • 2022
  • 최근 네트워크 기술 발전과 함께 IoT 및 소셜 네트워크 서비스의 활성화로 인해 많은 그래프 스트림 데이터가 생성되고 있다. 본 논문에서는 압축률 및 압축 시간에 대해 중점적으로 연구되던 기존의 압축 기법에 그래프 마이닝을 적용하여 스트림 그래프 환경을 함께 고려한 그래프 압축 기술을 제안한다. 또한, 최신 패턴을 유지하여 실시간으로 변화하는 스트림 그래프에서 압축 효율 및 처리속도를 향상시킨다. 본 논문에서는 그래프 스트림 처리를 위한 점진적 빈발 패턴 기반 압축 기법을 제안하였다. 제안하는 기법의 우수성을 보이기 위해 압축률과 처리시간을 기존기법과 비교하여 성능평가를 수행한다. 제안하는 기법은 그래프 데이터의 크기가 커질 때 중복되는 데이터가 많아져 기존 기법보다 빠른 처리속도를 보인다. 따라서, 빠른 처리가 요구되는 스트림 환경에서 제안하는 기법을 활용할 수 있다.

무선랜에서 낮은 지연 특성을 가지는 인증유지 핸드오프 기법과 트래픽 관리 기법 (Authenticated Handoff with Low Latency and Traffic Management in WLAN)

  • 최재우;양대헌;강전일
    • 정보보호학회논문지
    • /
    • 제15권2호
    • /
    • pp.81-94
    • /
    • 2005
  • 최근 무선랜 환경을 우리 근체에 널리 퍼져있고 많은 사람들이 FDA를 비롯한 multimedia application들과 같은 휴대장치를 많이 사용함으로써 단말 장비들의 이동이 계속 늘어나고 있다 그러나 이러한 단말 장비들이 이동하여 현재 접속되어 있는 AP(Access Point)를 벗어나 다른 AP와 접속을 시도할 때 두 AP들 사이에는 핸드오프 지연이 발생한다. 이러한 핸드오프 지연을 줄이기 위해 이 논문에서는 효과적인 데이터 구조를 사용하는 WFH(Weighted Frequent Handoff)를 제안한다. WFH는 FHR(Frequent Handoff Region)에서 클라이언트의 이동확률 개념을 도입한 새로운 cache replacement algorithm을 사용하여 cache hit ratio를 높이고 토폴로지에서 불필요하게 중복되는 트래픽도 줄여준다. 이 알고리즘은 QoS를 기반으로 하는 클라이언트의 레벨과 이동 패턴에 따라서 인종되는 범위가 달라지는 FHR과 네트워크 이동 토폴로지를 동적을 캡처하는 neighbor graph을 이용하고 있다.