A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Data mining over data streams should support the flexible trade-off between processing time and mining accuracy. In many application areas, mining frequent itemsets has been suggested to find important frequent itemsets by considering the weight of itemsets. In this paper, we present an efficient algorithm WSFI (Weighted Support Frequent Itemsets)-Mine with normalized weight over data streams. Moreover, we propose a novel tree structure, called the Weighted Support FP-Tree (WSFP-Tree), that stores compressed crucial information about frequent itemsets. Empirical results show that our algorithm outperforms comparative algorithms under the windowed streaming model.
최근에는 데이터를 획득 및 처리하는 방법의 향상으로 인하여 연속적이고 실시간으로 발생되는 데이터를 처리하는 응용이 증가하고 있다. 그러한 응용에서 연관규칙을 추출하기 위해서는 새로운 방식을 사용하여 빈발항목집합을 찾아내야 한다. 기존의 빈발항목을 발견하는 방식에서는 전체 데이터베이스를 반복적으로 읽으면서 처리해야 한다. 그러나 실시간이고 연속적으로 발생하는 데이터를 처리하는 응용에서는 반복적으로 여러 번 데이터를 읽을 수 없기 때문에 일정 구간의 데이터를 한 번만 읽고 처리해야 한다. 따라서 본 논문에서는 입력되는 데이터 구간을 한 번만 읽고 최대 빈발항목 집합의 크기와 해당 빈발항목을 추정함으로써 필요한 연관규칙탐사를 가능하게 하는 빈발항목 추정 기법을 제안한다.
Data mining is the exploration and analysis of huge amounts of data to discover meaningful patterns. One of the most important data mining problems is association rule mining. Recent studies of mining association rules have proposed a closure mechanism. It is no longer necessary to mine the set of all of the frequent itemsets and their association rules. Rather, it is sufficient to mine the frequent closed itemsets and their corresponding rules. In the past, a number of algorithms for mining frequent closed itemsets have been based on items. In this paper, we use the transaction itself for mining frequent closed itemsets. An efficient algorithm is proposed that is based on a link structure between transactions. Our experimental results show that our algorithm is faster than previously proposed methods. Furthermore, our approach is significantly more efficient for dense databases.
본 논문에서는 데이타베이스를 단 한번 스캔하여 빈발 항목집합들을 생성할 수 있는 효율적인 알고리즘을 제안한다. 빈발 항목집합은 어떤 트랜잭션이 접근하는 항목 집합의 부분집합이다. 각 항목에 대하여 그 항목을 접근하는 트랜잭션들에 관한 정보를 가지고 있다면, 동일한 트랜잭션 식별자를 갖는 항목들만을 추출함으로써 빈발 항목집합들을 생성할 수 있다 본 논문에서 제안하는 방법은 한 번의 데이타베이스 스캔으로 각 항목마다 접근하는 트랜잭션 식별자를 저장할 수 있는 자료 구조를 생성하며, 동시에 해쉬 기법을 이용하여 2-빈발 항목집합들을 생성한다. 3-빈발 항목집합부터는 이 자료 구조와 각 항목에 대한 트랜잭션 식별자를 비교함으로써 간단히 빈발 항목집합들을 찾아낼 수 있다. 제안하는 알고리즘은 한 번의 데이타베이스 스캔만으로 빈발 항목집합들을 효율적으로 생성할 수 있다.
다양한 저장 장치의 발달과 네트워크의 발전은 대용량의 데이터를 연속적으로 빠르게 생성한다. 데이터 스트림에서의 데이터 마이닝은 처리 시간 및 메모리 사용에 제한적이다. 또한 생성된 데이터를 한 번의 스캔으로 유용한 패턴을 발견할 수 있어야 하고 정보 변화 가능성이 큰 데이터 속성을 갖는 경우 최근의 정보를 반영한 빠른 분석이 가능해야 한다. 기존의 지지도 기반 마이닝 방법들은 일정 기간 동안 미리 정의된 지지도 이상의 빈발 항목에 대하여만 고려하므로 중요도가 높은 항목들을 간과하는 문제점을 가지고 있다. 본 논문에서는 시간의 변화에 따른 가변성을 고려하여 가중치 지지도를 갖는 데이터 항목들에 대하여 보다 의미 있는 정보를 제공하기 위한 효율적인 빈발패턴 추출 방법을 제안하고자 한다. 제안된 WSFI-Mine(Weighted Support Frequent Itemsets Mine) 방법은 DCT(Data Stream Closed Pattern Tree) 데이터 구조를 이용하여 패쇄 빈발 항목을 탐사한다. 제안된 알고리즘은 DSM-FI와 THUI-Mine 알고리즘과 지지도 변화에 따른 성능을 비교하였고 그 결과 비교 알고리즘 보다 수행 시간이 우수함을 보였고, 빈발 항목을 생성하는 후보 항목의 수를 줄이므로 메모리 사용량을 효율적으로 사용할 수 있음을 보였다.
Nowadays, sharing data among organizations is often required during the business collaboration. Data mining technology has enabled efficient extraction of knowledge from large databases. This, however, increases risks of disclosing the sensitive knowledge when the database is released to other parties. To address this privacy issue, one may sanitize the original database so that the sensitive knowledge is hidden. The challenge is to minimize the side effect on the quality of the sanitized database so that non-sensitive knowledge can still be mined. In this paper, we study such a problem in the context of hiding sensitive frequent itemsets by judiciously modifying the transactions in the database. Unlike previous work, we consider the quality of the sanitized database especially on preserving the non-sensitive frequent itemsets. To preserve the non-sensitive frequent itemsets, we propose a border-based approach to efficiently evaluate the impact of any modification to the database during the hiding process. The quality of database can be well maintained by greedily selecting the modifications with minimal side effect. Experiments results are also reported to show the effectiveness of the proposed approach.
본 논문에서는 frequent itemset을 빠르게 발견해내기 위한 효율적인 vertical 마이닝 알고리즘을 제안한다. 본 알고리즘은 frequent itemset을 구하기 위해 아이템들을 Least Support Itemset(LSI) 과의 유사도에 의해 올림차순으로 정렬하여 탐색 트리를 구축하여 보다 빠르고 효율적으로 frequent itemset을 찾아낸다. 또한, 트리를 탐색 시, 2가지의 휴리스틱 방법을 사용하여 탐색의 초기에 많은 후보 아이템들을 탐색 트리로부터 제거함으로써 탐색 공간을 크게 줄인다. 본 논문에서 제안하는 알고리즘은 이전의 알고리즘들과 비교해, long pattern을 가지는 데이터 베이스에서 보다 빠르게 frequent itemset을 발견해 냄을 실험을 통해 발견하였다.
최근 들어 저장장치의 발전과 네트워크의 발달로 인하여 대용량의 데이터에 내재되어 있는 정보를 빠른시간 내에 처리하여 새로운 지식을 창출하려는 요구가 증가하고 있다. 연속적이고 빠르게 증가하는 데이터를 지칭하는 데이터 스트림에서 데이터 마이닝 기법을 이용하여 시간이 흐름에 따라 변하고, 무한적으로 증가하는 데이터 스트림에서의 빈발항목을 찾는 연구가 활발하게 진행되고 있다. 하지만 기존의 연구들은 시간의 흐름에 따른 빈발항목 탐색방법을 적절히 제시하지 못하고 있으며 단지 집계를 이용하여 빈발항목을 탐색하고 있다. 본 논문에서는 데이터 스트림에서 시간적 측면을 고려하여 상대적인 빈발항목을 탐색하기 위한 새로운 알고리즘으로 한정적인 메모리를 고려하여 빈발항목과 부분 빈발항목만을 저장하고 시간의 흐름에 따른 빈발항목의 갱신방법에 관하여 제안하였다. 논문에서 제안하는 알고리즘의 성능은 다양한 실험을 통해서 검증된다. 제안된 방법은 웹 코스웨어로 학습하는 학생들의 행동패턴을 시간대별로 파악하여 빈발항목 및 상대적인 빈발항목을 탐색함으로써 학생들의 학습효과 증진 및 지도 방향을 설정하는데 활용할 수 있다.
빈발 항목집합 마이닝 분야의 주된 연구 주제는 수행과정에서의 메모리 사용량을 줄이고 짧은 수행 시간에 마이닝 결과 집합을 얻는 것으로서, 빈발항목 탐색을 위한 다수의 방법들은 Apriori 알고리즘에 기반을 둔 다중 탐색 방법들이다. 또한 최대 빈발 패턴의 길이가 길어질수록 마이닝 수행 시간이 급격히 증가되는 단점을 가진다. 이를 극복하기 위해서 이전의 연구에서 마이닝 수행 시간을 단축하기 위한 다양한 방법들이 제안되었다. 하지만, 다수의 이들 방법들은 희소 데이터 집합에서는 다소 비효율적인 성능을 나타낸다. 본 논문에서도 효율적인 빈발항목 탐색 방법을 제안하였다. 먼저 빈발항목 탐색을 위한 새로운 트리 구조인 $L_2$-tree 구조를 제안하였으며, 더불어 $L_2$-tree를 이용하여 빈발 항목집합을 탐색하는 $L_2$-traverse 알고리즘을 제안하였다. $L_2$-traverse 구조는 길이가 2인 빈발 항목집합 $L_2$에 기반하여 생성되는 것으로서 크기가 매우 작으며, 이를 활용한 $L_2$-traverse 알고리즘은 $L_2$-tree를 단순히 한번 탐색함으로써 전체 빈발 항목집합을 빠른 시간에 구한다. 또한 수행 시간을 보다 단축할 수 있는 방법으로 길이가 3인 빈발 항목집합 $L_3$가 될 수 없는 $L_2$ 패턴들을 미리 제거하는 $C_3$-traverse 알고리즘도 제안하였다. 다양한 실험을 통해 제안된 방법들은 특히 $L_2$가 상대적으로 적은 희소 데이터 집합 환경일 때 기존의 다른 방법들보다 우수함을 검증하였다.
민감한 정보 숨기기 알고리즘은 민감한 정보를 보호하기 위하여 트랜잭션 데이터베이스를 삭제한다. 데이터 변경은 삭제 접근 방법들 중 하나이다. 민감한 정보를 숨기는 이전 연구들은 결과 데이터베이스의 품질을 유지하기 위해 서로 다른 휴리스틱 알고리즘을 적용했다. 그러나 민감한 정보를 숨기는 과정에서 변경되는 항목집합에 대한 영향을 평가하거나 숨겨지는 항목을 감소시키는 연구들은 미흡하였다. 본 논문에서는 민감한 빈발 항목집합을 숨기기 위하여 경계기반의 HSFI(Hiding Sensitive Frequent Itemsets) 알고리즘을 제안한다. 본 알고리즘에서 FP-Tree의 노드 정보는 기존과는 다르게 빈발 항목집합 생성단계에서 트랜잭션 정보와 민감 정보, 경계 정보를 모두 구성하며, 숨기는 과정에서 비민감한 빈발 항목집합의 영향을 줄이기 위하여 경계를 사용하였다. 본 논문의 예시 트랜잭션 데이터베이스에 HSFI를 적용한 결과, 손실 항목을 크게 감소시킴으로써 기존 방법들에 비해 효과적임을 증명하였고, 보다 개선된 데이터베이스의 품질을 유지할 수가 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.