• 제목/요약/키워드: Frequency-phase method

검색결과 1,651건 처리시간 0.033초

SASW실험 분산곡선의 자동화 계산을 위한 주파수-파수 기법 (Frequency-Wave Number Method for the Automated Calculation of the Phase Velocities from the SASW Measurements)

  • 조성호;강태호
    • 한국지반공학회논문집
    • /
    • 제19권4호
    • /
    • pp.299-310
    • /
    • 2003
  • SASW 실험으로 지반의 전단강성 구조를 구하는 해석과정에 있어서 위상속도의 계산은 SASW 실험의 신뢰도를 좌우하는 매우 중요한 단계이다. 기존의 SASW 자료 분석기법 중 위상속도의 계산은 전문가적 경험을 이용한 위상각 스펙트럼의 분석이 선행되어야 하는데, 위상각 스펙트럼 분석 과정의 난해성은 SASW 기법의 일반화에 장애가 되어 왔었다. 본 연구에서는 SASW 기법에 적용가능하고, 위상속도 계산에 전문가적 경험을 배제할 수 있으며, 자동화함으로써 효율성을 제고할 수 있는 위상속도 계산 기법을 제안하였다. 본 연구에서 제안한 기법은 다층구조 지반에서의 표면파의 주파수파수 특성을 이용하였으며, 그 개념에 기초하여 주파수파수 기법(Frequency-Wave Number Technique)이라고 하였다. 본 연구에서 제안한 기법의 신뢰성을 검증하기 위하여, SASW 수치실험을 수행하였다. 그리고 SASW 수치실험에 의해 구한 이론 전달함수로부터 위상속도를 계산하여, 위상각전개법으로 구한 위상속도와 비교 검토하였다. 또한, 경기도$\bigcirc$$\bigcirc$ 지구에서 수행한 SASW 실험자료에 대해 본 연구에서 제안한 기법을 적용하여 현장적용성 및 실용성을 확인하였다.

비선형 영역에서의 재료감쇠비 측정을 위한 주파수-위상각법 (Frequency-Phase Method to Measure Material Damping in a Nonlinear Range)

  • 우규석;조성호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.533-540
    • /
    • 2001
  • Material damping is an important parameter to evaluate the site response by a dynamic loading. Currently the material damping of the subgrade is mainly determined by a resonant column testing. Typical methods to evaluate material damping include half-power bandwidth method and free-vibration decay method. In the large strain range, the half-power bandwidth method gives an erratic damping factor, because the method is based on the assumption of the linear behavior of a specimen. The free-vibration decay method has also limitations in that the damping factors vary with the range of cycles in calculation, and also in that the specific shear strain can not be designated for the free vibration. In this study, the frequency-phase method, which was developed to evaluate material damping of a beam simply supported, is introduced to evaluate the material damping by the resonant column testing. Also, the comparison among half-power method, free-vibration decay method and the frequency-phase method is provided for a remolded sand.

  • PDF

An Accurate Design Method of Wideband BPF Considering Frequency Dependence of Inverters

  • Youna, Jang;Dal, Ahn
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents a design method for a wideband bandpass filter (BPF) which compensates for frequency dependency based on the image admittance and image phase. In the proposed method, new compensation methods for the admittance and phase are integrated with the conventional method. The proposed method improves the frequency shift and reduces the unwanted bandwidth when designing more than 20% of the Fractional Bandwidth (FBW), whereas the conventional method exhibits frequency degradation at only 10% FBW. The proposed design theory was verified by applying it to both lumped elements and distributed lines through circuit simulation and measurements without an optimization process. The measurement results demonstrate improvements in the frequency shift and target bandwidth. In the future, an accurate design method based on frequency dependence can be implemented for the next-generation broadband communication system applications.

주파수 변조 방식 3상 인터리브드 양방향 DC-DC 컨버터의 과도상태 과전류를 최소화하기 위한 스위칭 기법 (A Switching Method for Minimizing the Over Current in Transient Response of 3-phase Interleaved Bidirectional DC-DC Converter with Frequency Modulation)

  • 배종우;정혜수;정재헌;노의철
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.530-537
    • /
    • 2016
  • This work deals with a switching method for minimizing overcurrent in a three-phase interleaved bidirectional DC-DC converter with frequency modulation. Generally, a three-phase interleaved DC-DC converter is used to reduce a current ripple component. The combined operation of three-phase and two-phase converters can significantly reduce the ripple component. However, the conventional PWM method cannot solve severe overcurrent during phase transfer or frequency variation for power control. To overcome this problem, this work proposes a new PWM switching method. A 3 kW DC-DC power converter is designed and implemented, and the converter is operated in discontinuous current mode with varying switching frequencies for power control. Simulation and experimental results show the validity of the proposed switching method. The proposed switching method can be widely used in the field of current ripple reduction for three-phase interleaved bidirectional DC-DC converters.

순시전력 합성 개념을 이용한 가상주파수 3상 실효전압 계측기법 (3-Phase RMS Voltage Measurement Method of Virtual Frequence using Instantaneous Power Component Concept)

  • 박성미;양지훈;박성준
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.251-257
    • /
    • 2019
  • This paper proposes a new measurement method using virtual power concept to measure the effective value of 3-phase voltage with variable frequency. The conventional effective value measurement method uses a method of integrating data sampled during one or half cycle of the power voltage and averaging it. In this method, since the effective voltage is calculated every cycle, a time delay occurs in the measured effective voltage and it is s a problem to measure the effective value of a device whose frequency varies from time to time, such as a generator. The proposed 3-phase voltage rms measurement method has an advantage that it can measure accurate voltage RMS value regardless of measurement frequency variation. In particular, there is an advantage in that it is possible to measure a 3-phase effective voltage rather than an average value of the effective voltage of each phase in a 3-phase unbalance voltage. In addition, the validity of the proposed method is verified by using the Psim simulation tool and the experimental results are analyzed by applying the proposed measurement algorithm to the actual three phase synchronous generator voltage measurement experiment.

OFDM 시스템에서 주파수 오차와 위상 잡음에 의한 ICI를 제거하기 위한 효율적인 자가상쇄 기법 (An Efficient ICI Self-Cancellation Method with Frequency Offset and Phase Noise in OPDM Systems)

  • 박정환;김형명
    • 한국통신학회논문지
    • /
    • 제34권2A호
    • /
    • pp.155-163
    • /
    • 2009
  • OFDM 시스템은 스펙트럼 효율 때문에 각광받고 있지만, ICI의 원인인 주파수 오차와 위상 잡음에 민감하다는 단점을 가지고 있다. ICI 자가상쇄 방법은 주파수 오차나 위상 잡음을 없애는데 좋은 성능을 가지고 있다. 이 논문에서는 N/2 간격의 conjugate 데이터 방법을 이용하여 주파수 오차와 위상잡음이 많이 존재하는 상황 (주파수 오차=$0.2{\sim}0.4$, 위상잡음=10도 정도)에서 성능이 좋은 ICI 자가 상쇄 방식을 제안한다. 또한, 파일럿을 이용하여 좀더 효율적인 ICI 자가상쇄 방법을 제안한다. 모의실험 결과는 이러한 제안된 방식의 성능이 기존의 방식보다 우수하다는 것을 확인할 수 있었다.

위상차 변화에 따른 초음파 모터의 주파수-속도 특성 (The Frequency-Speed Characteristics of Ultrasonic Motor by the Change of Phase difference)

  • 김동옥;정국영;오금곤;김영동
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.146-149
    • /
    • 2003
  • To control the position, velocity and torque of the ultrasonic motor, a great variety of method are proposed such as the amplitude, phase difference, frequency and so on. In the case of phase difference method, it has some advantages: it can control the direction and velocity of rotation only adjusting the phase difference and it has wide control-band. During the USM driving on adjusting phase difference, its characteristic was transformed by the change of resonance-frequency of stator, which means that the resonance frequency is different according to the phase difference. Consequently, we need to set up the most suitable driving frequency according to each phase difference.

  • PDF

Noise reduction method using a variance map of the phase differences in digital holographic microscopy

  • Hyun-Woo Kim;Myungjin Cho;Min-Chul Lee
    • ETRI Journal
    • /
    • 제45권1호
    • /
    • pp.131-137
    • /
    • 2023
  • The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatialfrequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages.

A Frequency-Tracking Method Based on a SOGI-PLL for Wireless Power Transfer Systems to Assure Operation in the Resonant State

  • Tan, Ping-an;He, Haibing;Gao, Xieping
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1056-1066
    • /
    • 2016
  • Wireless power transfer (WPT) technology is now recognized as an efficient means of transferring power without physical contact. However, frequency detuning will greatly reduce the transmission power and efficiency of a WPT system. To overcome the difficulties associated with the traditional frequency-tracking methods, this paper proposes a Direct Phase Control (DPC) approach, based on the Second-Order Generalized Integrator Phase-Locked Loop (SOGI-PLL), to provide accurate frequency-tracking for WPT systems. The DPC determines the phase difference between the output voltage and current of the inverter in WPT systems, and the SOGI-PLL provides the phase of the resonant current for dynamically adjusting the output voltage frequency of the inverter. Further, the stability of this control method is analyzed using the linear system theory. The performance of the proposed frequency-tracking method is investigated under various operating conditions. Simulation and experimental results convincingly demonstrate that the proposed technique will track the quasi-resonant frequency automatically, and that the ZVS operation can be achieved.

주기적 위상 변동 기법을 이용한 새로운 단독운전 검출 기법 (Novel Anti-islanding method using phase shift with a periodic function)

  • 정영석;최재호;소정훈;유병규;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1153-1154
    • /
    • 2006
  • This paper proposes the optimal design method based on NDZ analysis to secure the islanding defection ability and to maintain the stability and power quality when the grid is connected. A PSiM-based model and analysis of the system is presented, specialty aimed at improving the effectiveness of phase shift anti-islanding method with frequency feedback, which causes the inverter current to be generated slightly lower or higher in frequency than the frequency of the terminal voltage. The proposed method can cause frequency jump with leading and lagging phase of output current in two line cycles. As a result, the proposed algorithm is more sensitive and reliable than the conventional phase shift method. Experimental results, on a 3 kW inverter connected to 220 V, 60 Hz utility, are discussed.

  • PDF