• Title/Summary/Keyword: Frequency tuning

Search Result 693, Processing Time 0.025 seconds

5.8GHz Band Frequency Synthesizer using Harmonic Oscillator (하모닉 발진을 이용한 5.8GHz 대역 주파수 합성기)

  • Choi, Jong-Won;Lee, Moon-Que;Shin, Keum-Sik;Son, Hyung-Sik
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.304-308
    • /
    • 2003
  • A low cost solution employing harmonic oscillation to the frequency synthesizer at 5.8 GHz is proposed. The proposed frequency synthesizer is composed of 2.9GHz PLL chip, 2.9GHz oscillator, and 5.8GHz buffer amplifier. The measured data shows a frequency tuning range of 290MHz, ranging from 5.65 to 5.94GHz, about 0.5dBm of output power, and a phase noise of -107.67 dBc/Hz at the 100kHz offset frequency. All spurious signals including fundamental oscillation power (2.9GHz) are suppressed at least 15dBc than the desired second harmonic signal.

  • PDF

Design of a Ultra Miniaturized Voltage Tuned Oscillator Using LTCC Artificial Dielectric Reson (LTCC 의사 유전체 공진기를 이용한 초소형 전압제어발진기 설계)

  • Heo, Yun-Seong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.613-623
    • /
    • 2012
  • In this paper, we present an ultra miniaturized voltage tuned oscillator, with HMIC-type amplifier and phase shifter, using LTCC artificial dielectric resonator. ADR which consists of periodic conductor patterns and stacked layers has a smaller size than a dielectric resonator. The design specification of ADR is obtained from the design goal of oscillator. The structure of the ADR with a stacked circular disk type is chosen. The resonance characteristic, physical dimension and stack number are analyzed. For miniaturization of ADRO, the ADR is internally implemented at the upper part of the LTCC substrate and the other circuits, which are amplifier and phase shifter are integrated at the bottom side respectively. The fabricated ADRO has ultra small size of $13{\times}13{\times}3mm^3$ and is a SMT type. The designed ADRO satisfies the open-loop oscillation condition at the design frequency. As a results, the oscillation frequency range is 2.025~2.108 GHz at a tuning voltage of 0~5 V. The phase noise is $-109{\pm}4$ dBc/Hz at 100 kHz offset frequency and the power is $6.8{\pm}0.2$ dBm. The power frequency tuning normalized figure of merit is -30.88 dB.

A Continuous Fine-Tuning Phase Locked Loop with Additional Negative Feedback Loop (추가적인 부궤환 루프를 가지는 연속 미세 조절 위상 고정루프)

  • Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.811-818
    • /
    • 2016
  • A continuous fine-tuning phase locked loop with an additional negative feedback loop has been proposed. When the phase locked loop is out-of-lock, the phase locked loop has a fast locking characteristic using the continuous band-selection loop. When the phase locked loop is near in-lock, the bandwidth is narrowed with the fine loop. The additional negative feedback loop consists of a voltage controlled oscillator, a frequency voltage converter and its internal loop filter. It serves a negative feedback function to the main phase locked loop, and improves the phase noise characteristics and the stability of the proposed phase locked loop. The additional negative feedback loop makes the continuous fine-tuning loop work stably without any voltage fluctuation in the loop filter. Measurement results of the fabricated phase locked loop in $0.18{\mu}m$ CMOS process show that the phase noise is -109.6dBc/Hz at 2MHz offset from 742.8MHz carrier frequency.

L-band Voltage Controlled Oscillator for Ultra-Wideband System Applications (초광대역 응용 시스템을 위한 L밴드 전압제어발진기 설계)

  • Koo Bonsan;Shin Guem-Sik;Jang Byung-Jun;Ryu Keun-Kwan;Lee Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.820-825
    • /
    • 2004
  • In this paper an octave tuning voltage controlled oscillator which is used in set-top TV tuner was designed. Oscillation frequency range is 0.9 GHz~2.2 GHz with 1.3 GHz bandwidth. By using 4 varactor diodes in base and emitter of transistor, wide-band tuning, sweep linearity and low phase noise could be achieved. Designed VCO requires a tuning voltage of 0 V ~ 20 V and DC consumption of 10 V and 15 mA. Designed VCO exhibits an output power of 5.3 dBm $\pm$1.1 dB and a phase noise below -94.8 dBc/Hz @ 10 kHz over the entire frequency range. The sweep linearity shows 65 MHz/V with a deviation of $\pm$10 MHz.

Design of a Wide Tuning Range DCO for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 DCO 설계)

  • Song, Sung-Gun;Park, Sung-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.614-621
    • /
    • 2011
  • This paper presents design of a wide tuning range digitally controlled oscillator(DCO) for Mobile-DTV applications. DCO is the key element of the ADPLL block that generates oscillation frequencies. We proposed a binary delay chain(BDC) structure, for wide tuning range DCO, modifying conventional fixed delay chain. The proposed structure generates oscillation frequencies by delay cell combination which has a variable delay time of $2^i$ in the range of $0{\leq}i{\leq}n-1$. The BOC structure can reduce the number of delay cells because it make possible to select delay cell and resolution. We simulated the proposed DCO by Cadence's Spectre RF tool in 1.8V chartered $0.18{\mu}m$ CMOS process. The simulation results showed 77MHz~2.07GHz frequency range and 3ps resolution. The phase noise yields -101dBc/Hz@1MHz at Mobile-DTV maximum frequency 1675MHz and the power consumption is 5.87mW. The proposed DCO satisfies Mobile-DTV standards such as ATSC-M/H, DVB-H, ISDB-T, T-DMB.

A Design of CMOS Multi-Mode Baseband Filter with New Automatic Tuning (새로운 자동 튜닝 기능을 가지고 있는 CMOS 다중 모드 기저 대역 필터의 설계)

  • Lee Kang-Yoon;Ku Hyunchul;Hur Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.34-41
    • /
    • 2006
  • This paper presents a CMOS multi-mode baseband filter architecture to support PDC/GSM/EDGE/WCDMA and its new automatic tuning method. 5-th order Chebyshev low pass filter is designed for implementing the baseband channel-select filter. Capacitors and resistors were shared efficiently between modes to minimize the area. And, the new cut-off frequency tuning method is proposed to compensate the process variation. This method can reduce the area and the noise level due to MOS switches.

Sensorless Vector Control of a Wound Induction Motor Using MRAS with On-Line Stator Resistance Tuning

  • Lee Jae-Hak;Kim Yoon-Ho;Lee Houng-Gyun;Woo Hyuk-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.462-465
    • /
    • 2001
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large scale resistor. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as Crain and Cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and in general, PI controller is used for control of current, torque, position, and speed for the wound induction motor drive system. However, the system may result in poor performance since sensors have to be used, which in turn is limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor drive. In conventional MRAS method, in low frequency, stator resistance variation can result in poor performance. Therefore, to overcome several shortages of the conventional MRAS caused by parameter variation and enhance robustness of the sensor less vector control, this paper investigates a MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor. The validity and effectiveness of the proposed method is verified through digital simulation.

  • PDF

Design of an SIR BPF by a Novel EM Tuning of Individual Resonators (개별 공진기의 EM 조정을 통한 SIR로 구성된 대역 여파기의 설계)

  • Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.748-756
    • /
    • 2007
  • In SIR filter, fringing capacitances and discontinuities yield a distorted frequency response from those expected by design formulas, especially in higher frequencies. In this paper, a procedure is presented in order to compensate for fringing capacitances and step impedance discontinuities by EM simulation for a 5th order SIR filter. This method propose the procedure of tuning the coupling and the length of individual resonator by EM simulation. For the filter composed by the tuned resonators, no further tuning is required. The procedure is experimentally justified by comparing the measured data of the fabricated filter with the simulation results.

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF