• Title/Summary/Keyword: Frequency response function (FRF) analysis

Search Result 73, Processing Time 0.027 seconds

Global Sensitivity Analysis of Joints for Plug-in Digital Framework (플러그인 디지털 프레임웍을 위한 연결부 전역민감도 해석)

  • Lee, Dooho;Won, Young-Woo;Kwon, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Plug-In Digital Framework is a system response analysis tool that is employed when system components are composed of black-box modules. Generally, the dynamic characteristics of joints between the system components significantly affect system responses, and they lead to displacement- and frequency-dependent stiffness and loss factor. Thus, the sensitivity of each joint parameters should be estimated from a global perspective. In this study, we introduce a global sensitivity analysis procedure under the Plug-In Digital Framework. To efficiently calculate the system responses, we introduce the frequency response function (FRF)-based substructuring method. Using the random balance designs (RBD), we generate the system responses and estimate the global first-order sensitivities for each joint stiffness. We apply the proposed global sensitivity analysis method to an interior noise problem of a passenger car, and we evaluate the efficiency of the global sensitivity analysis method.

Contribution Analysis on a Sub-frame of Vehicle (기여도 분석 방법을 이용한 서브프레임의 동특성 해석)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Kim, Ki-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.155-158
    • /
    • 2005
  • Sub-frame is a key component to damp the vibration of engine-born and isolate the input force from a ground. To enhance the performance of the sub-frame of vehicle, its structure should be designed to be a high performing mechanical filter that exclude the low frequency vibration elements. In this paper, a contribution analysis based on the frequency response function(FRF) is introduced to detect a high sensitive position of the target sub-frame and its results are validated with a SDM(structural dynamic modification) analysis.

  • PDF

Evaluation of the Dynamic Modulus by using the Impact Resonance Testing Method (비파괴충격파 시험법을 이용한 동탄성계수 평가)

  • Kim, Dowan;Jang, ByungKwan;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS : The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine. CONCLUSIONS : The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.

A Study on the Safely of Vibration Characteristics on the Various Configuration of Tube (튜브 형상에 따른 진동 특성의 안전성 연구)

  • 신귀수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2000
  • This paper studies the effect of vibrational characteristics of the various tubes analyzed though experiment. By an experiment analysis we found out that the factor of system vibration is fluid-structure interaction of tube line. In fluid-filled tube system we study on the influence that the natural frequency of system and the frequency of wave motion produce upon through three experiments. Three experiments are modal test on each tube, FRF in continuous system, and vibrating tests when the system is driving on. From the results of the experimental studies, we obtained that the natural frequencies of system are very important than wave induced vibrations. and according to the variation of configuration, the frequencies are different each other. And we found that though fluid passed away through the tube, the tendency of system vibration level was similar with the mode shape at the simple system.

  • PDF

Identification of Damages within a Plate Structure (평판 구조물의 손상규명)

  • Kim, Nam-In;Lee, U-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.671-675
    • /
    • 2000
  • In this study, an FRF-based structural damage identification method (SDIM) is proposed for plate structures. The present SDIM is derived from the partial differential equation of motion of the damaged plate, in which damage is characterized by damage distribution function. Various factors that might affect the accuracy of the damage identification are investigated. They include the number of modal data used in the analysis and the damage-induced modal coupling. In the present SDIM, an efficient iterative damage self-search method is introduced. The iterative damage search method efficiently reduces the size of problem by searching out and then by removing all damage-free zones at each iteration of damage identification analysis. The feasibility of the present SDIM is studied by some numerically simulated tests.

  • PDF

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.

Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-Dimensional Spectral Analysis Method (다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측)

  • Park, Sang-Gil;Kang, Kwi-Hyun;Hwang, Sung-Uk;Oh, Ki-Seok;Rho, Kuk-Hee;Oh, Jae-Eung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

  • PDF

Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-dimensional Spectral Analysis Method (다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측)

  • Park, Sang-Gil;Kang, Kwi-Hyun;Hwang, Sung-Wook;Oh, Ki-Seok;Rho, Kuk-Hee;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1206-1212
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

Modal analysis of asymmetric/anisotropic rotor system using modulated coordinates (변조좌표계를 이용한 비대칭/비등방 회전체의 모드 해석)

  • 서정환;홍성욱;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.304-309
    • /
    • 2003
  • A new modal analysis method for rotor systems with periodically time-varying parameters is proposed. The essence of method is to introduce modulated coordinates to derive the equivalent time-invariant equation. This paper presents a modal analysis method using modulated coordinates fur general rotors, of which rotating and stationary parts both possess asymmetric properties. The equation of motion with time-varying parameters is transformed to an infinite order matrix equation with the time-invariant parameters. A theory of modal analysis for the system is presented with the infinite order equation and a couple of reduced order equations. A numerical example with simple asymmetric rotor is provided to demonstrate the effectiveness of the proposed method

  • PDF

The Analysis of Mode Shape using 2 Dimensional Continuous Scanning (2차원 연속 Scanning을 이용한 진동모드 해석)

  • Yoon, Sang-Yol;Ryu, Je-Kil;Park, Kyi-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.531-535
    • /
    • 2000
  • If the displacement of the structure is obtained by integrating the signal from accelorometer and laser, the vibration mode can be examined. This conventional method, however, has the disadvantage of the necessity of multiple accelerometers and many data processing steps such as frequency response function(FRF). In order to get smooth mode shape, we should also use algorithms of cubic spline or others. In this paper, we propose a method which gets the mode shape by using the velocity signal directly obtained from the plane scanning. In this method, we just use coefficients and phases for specific frequency.

  • PDF