• Title/Summary/Keyword: Frequency response function (FRF) analysis

Search Result 73, Processing Time 0.02 seconds

Damage detection in plate structures using frequency response function and 2D-PCA

  • Khoshnoudian, Faramarz;Bokaeian, Vahid
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.427-440
    • /
    • 2017
  • One of the suitable structural damage detection methods using vibrational characteristics are damage-index-based methods. In this study, a damage index for identifying damages in plate structures using frequency response function (FRF) data has been provided. One of the significant challenges of identifying the damages in plate structures is high number of degrees of freedom resulting in decreased damage identifying accuracy. On the other hand, FRF data are of high volume and this dramatically decreases the computing speed and increases the memory necessary to store the data, which makes the use of this method difficult. In this study, FRF data are compressed using two-dimensional principal component analysis (2D-PCA), and then converted into damage index vectors. The damage indices, each of which represents a specific condition of intact or damaged structures are stored in a database. After computing damage index of structure with unknown damage and using algorithm of lookup tables, the structural damage including the severity and location of the damage will be identified. In this study, damage detection accuracy using the proposed damage index in square-shaped structural plates with dimensions of 3, 7 and 10 meters and with boundary conditions of four simply supported edges (4S), three clamped edges (3C), and four clamped edges (4C) under various single and multiple-element damage scenarios have been studied. Furthermore, in order to model uncertainties of measurement, insensitivity of this method to noises in the data measured by applying values of 5, 10, 15 and 20 percent of normal Gaussian noise to FRF values is discussed.

Model reduction and compensation of FE model for Hybrid modelling (혼합모델링을 위한 유한요소모델의 자유도 축소와 보상)

  • 이창호;이시복;이인갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.419-425
    • /
    • 1998
  • This paper presents a method of enhancing the accuracy of hybrid modelling that predicts dynamic characteristics of the coupled structure by synthesizing after FE analysis and vibration experimental analysis of the relevant individual substructure. Since most FE models in engineering problems are very large, dynamic analysis with the full FE model is costly. Frequency response function(FRF) synthesis after reducing the FE model can reduce this computational cost but introduce mode truncation error similarly in the case of considering only low-frequency mode after eigensolutions of the complete structure. This paper introduces a FRF of FE model for hybrid FRF synthesis, which is reduced by using IIRS methods and compensated through eigensolutions of the reduced model, and shows the effectiveness of the presented method.

  • PDF

Performance sensitivity analysis of feedback system for adaptive control of a vehicle suspension (자동차 현가장치의 적응제어를 위한 feedback 시스템의 성능감도 해석)

  • Park, H;Jeon, E. S.;Oh, J. E.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 1991
  • A linear quarter model of a vehicle suspension system is built and simulated. Especially the so-called sensitivity analysis is conducted in order to show its applicability to design problems, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. Typical performance measures, namely, sprung mass acceleration, suspension deflection, and tire deflection are examined. The vehicle model is analyzed for ist performance sensitivity as a function of the system's feedback gains. The variable feedback gains are selected as the spring and damping coefficients. Frequency response, RMS response, and performance index of the performance evaluation variables are considered and three-dimensional and contour plots of response surfaces are formed to examine output sensitivity to suspension feedback. Performance trade-offs over the entire frequency spectrum are identified from the FRF, and that between ride quality and handling characteristics are examined from the RMS responses.

  • PDF

Substructure Analysis of Steering System using Transfer Function Synthesis Method (전달함수합성법을 이용한 스티어링 시스템의 부분구조 해석)

  • Hong, Sung-Kyu;Kim, Do-Youn;Lee, Doo-Ho;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.201-206
    • /
    • 2000
  • In this work transfer function synthesis method based on FRF data of each substructure is investigated for a complex structure composed of many substructures. Though the transfer function synthesis method has superiority to analyze the characteristics of interfaces among substructures effectively, many problems arise in the computation process, especially matrix inversion process. Due to computational problems, the error between the data obtained by test and the predictions through computations is inevitable. So in this paper, computational aspects in the transfer function synthesis method are examined through a steering system problem of passenger car. For the FBS method, frequency response functions of 3 substructures are measured experimentally. Effects of several parameters such as matrix inversion method, connection conditions between substructures and off-diagonal terms on system response are studied numerically.

  • PDF

Full Vehicle Modal Testing using Single-Run FRF Measurement and Mode Map Validation (Single-Run FRF 측정을 통한 실차 모달 시험 및 모드맵 검증)

  • Lee, Keun-Soo;Jung, Seung-Kyun;Kim, Jeung-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • Finding reasonable flexural modes from the full vehicle modal testing has always been a difficult job to N&V engineers due to FRF inconsistency, nonlinearity, heavy damping and, in many cases, interactions between global body structural modes and massive isolate/non-isolated subsystem modes. This paper provides a brier overview of the mode map validation using single-run FRF measurement with highly sensitive accelerometers fur the full vehicle modal analysis and then it can be used to characterize the vehicle's global/local vibration performances, especially customer perceived "structural feel" typically below 40Hz.

  • PDF

Calculating Method of FRF with Sub-structure Mode Synthesis Method (부분구조 모드합성법에 의한 주파수응답함수 산출법)

  • Oh, Chang-Guen;Park, Kyung-Il;Park, Sok-Chu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.393-398
    • /
    • 2015
  • A very important part in vibration analysis is to calculate the frequency response function (FRF). In general, a large sized or/and complicated structure has many thousands to millions of degrees. Therefore, the FRF cannot be calculated by the traditional analysis method using an inverse matrix. This paper presents a new FRF calculation method of a superstructure by synthesizing sub-structure modes, of which the DOF can be deduced by partitioning into some sub-structures. To confirm its analysis results, the method was applied to an assembled plate ($B300{\times}L900{\times}t5mm$) with three diagonal sub-plates($B300{\times}L300{\times}t5mm$) in series and compared with the measured data. The test results have were comparable those of the calculated ones with an error less than 5%.

Noise Characteristics and Frequency Response Function on Implementation of AZ31 Magnesium Alloy to Automobile Hood Panel (AZ31 마그네슘합금의 자동차 Hood Panel적용에 따른 주파수응답 및 소음 특성의 변화)

  • Lee, Choong-Do;Yeo, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • In present study, it aims to compare the noise and vibration characteristics between magnesium alloy and steel hood panel. The AZ31 magnesium hood panel was fabricated through warm forming process, and the noise and vibration characteristics between both hood panels was compared through the measurement of engine radiation noise and transmission loss, as well as FRF on modal analysis. The sound insulation performance of magnesium alloy was wholly superior to that of steel hood panel, even though the transmission loss of magnesium alloy is lower than that of steel due to mass effect primarily. The FRF characteristics on modal analysis indicates that the resonance frequency of magnesium hood panel is remarkably increased to higher value than that of steel hood panel. The radiation and interior noise of magnesium panel even without acoustic hood insulation were remarkably lower than those of steel hood panel with acoustic insulation, in particular, at a range below 4,000 rpm.

Mode analysis of end-milling process by RLSM (RLSM 모델링에 의한 엔드밀링 시스템의 모드 분석)

  • Kim, J.D.;Yoon, M.C.;Kim, K.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.54-60
    • /
    • 2011
  • In this study, an analytical realization of end-milling system was introduced using recursive parametric modeling analysis. Also, the numerical mode analysis of end-milling system with different conditions was performed systematically. In this regard, a recursive least square(RLS) modeling algorithm and the natural mode for real part and imaginary one was discussed. This recursive approach (RLSM) can be adopted for the on-line system identification and monitoring of an end-milling for this purpose. After experimental practice of the end-milling, the end-milling force was obtained and it was used for the calculation of FRF(Frequency response function) and mode analysis. Also the FRF was analysed for the prediction of a end-milling system using recursive algorithm.

Mode analysis of end-milling process by recursive parametric modelling (순환 파라메트릭 모델링에 의한 엔드밀 시스템의 모드 분석)

  • Kim, T.H.;Kim, J.D.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.73-79
    • /
    • 2011
  • In this study, an analytical realization of end-milling system was introduced using recursive parametric modeling analysis. Also, the numerical mode analysis of end-milling system with different conditions was performed systematically. In this regard, a recursive least square modelling algorithm and the natural mode for real part and imaginary one was discussed. This recursive approach (RLSM) can be adopted for on-line end-milling identification. After experimental practice of the end-milling, the end-milling force was obtained and it was used for the calculation of FRF (Frequency response function) and mode analysis. Also the FRF was analysed for the prediction of a end-milling system using recursive algorithm.