• Title/Summary/Keyword: Frequency of resistance

Search Result 1,503, Processing Time 0.04 seconds

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method (초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Chung, Min-Hwa;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

Virulence, Resistance Genes, and Transformation Amongst Environmental Isolates of Escherichia coli and Acinetobacter spp.

  • Doughari, Hamuel James;Ndakidemi, Patrick Alois;Human, Izanne Susan;Benade, Spinney
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2012
  • The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: $13.3{\times}10^{-7}-53.4^{-7}$), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 ${\mu}g$) and intragenetic transfer of multidrug-resistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

Frequency and Type of Disputed rpoB Mutations in Mycobacterium tuberculosis Isolates from South Korea

  • Jo, Kyung-Wook;Lee, Soyeon;Kang, Mi Ran;Sung, Heungsup;Kim, Mi-Na;Shim, Tae Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.3
    • /
    • pp.270-276
    • /
    • 2017
  • Background: A disputed rpoB mutation is a specific type of rpoB mutation that can cause low-level resistances to rifampin (RIF). Here, we aimed to assess the frequency and types of disputed rpoB mutations in Mycobacterium tuberculosis isolates from South Korea. Methods: Between August 2009 and December 2015, 130 patients exhibited RIF resistance on the MTBDRplus assay at Asan Medical Center. Among these cases, we identified the strains with disputed rpoB mutation by rpoB sequencing analysis, as well as among the M. tuberculosis strains from the International Tuberculosis Research Center (ITRC). Results: Among our cases, disputed rpoB mutations led to RIF resistance in at least 6.9% (9/130) of the strains that also exhibited RIF resistance on the MTBDRplus assay. Moreover, at the ITRC, sequencing of the rpoB gene of 170 strains with the rpoB mutation indicated that 23 strains (13.5%) had the disputed mutations. By combining the findings from the 32 strains from our center and the ITRC, we identified the type of disputed rpoB mutation as follows: CTG511CCG (L511P, n=8), GAC516TAC (D516Y, n=8), CTG533CCG (L533P, n=8), CAC526CTC (H526L, n=4), CAC526AAC (H526N, n=3), and ATG515GTG (M515V, n=1). Conclusion: Disputed rpoB mutations do not seem to be rare among the strains exhibiting RIF resistance in South Korea.

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.2
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.

Frequency Dependent Resistivity and Relative Dielectric Constant with the Water Contents in Sand (모래의 수분함유량에 따른 비저항 및 비유전율의 주파수 의존성)

  • Lee, Bok-Hee;Cha, Eung-Suk;Choi, Jong-Hyuk;Choi, Young-Chul;Yoo, Yang-Woo;Ann, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.348-351
    • /
    • 2009
  • In order to evaluate the performance of a grounding system against lightning or fault currents including high frequency components, the grounding impedance should be considered rather than its ground resistance. Recently, some researches on the evaluation and modeling of the grounding impedances have been carried out but the results have not been yet sufficient. This paper deals with the frequency dependence of the resistivity and relative dielectric constant of sand associated with water contents. As a result, the resistivity of sand is getting lower with increasing water content and it is nearly independent on the frequency in the range of less than 1MHz, and is decreased over the frequency range of above 1MHz. Also, the relative dielectric constant is rapidly decreased with the frequency in the range of less than 10kHz, but it is nearly not dependent on the frequency over the frequency range of 10kHz. It was found from this work that the frequency dependance of resistivity and relative dielectric constant of soil should be considered in designing the grounding systems for protection against lightning or surges.

  • PDF

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

Molecular Markers for Sulfadoxine/Pyrimethamine and Chloroquine Resistance in Plasmodium falciparum in Thailand

  • Kuesap, Jiraporn;Suphakhonchuwong, Nutnicha;Kalawong, Lertluk;Khumchum, Natthaya
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Drug resistance is an important problem hindering malaria elimination in tropical areas. Point mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes confer resistance to antifolate drug, sulfadoxine-pyrimethamine (SP) while P. falciparum chloroquine-resistant transporter (Pfcrt) genes caused resistance to chloroquine (CQ). Decline in Pfdhfr/Pfdhps and Pfcrt mutations after withdrawal of SP and CQ has been reported. The aim of present study was to investigate the prevalence of Pfdhfr, Pfdhps, and Pfcrt mutation from 2 endemic areas of Thailand. All of 200 blood samples collected from western area (Thai-Myanmar) and southern area (Thai-Malaysian) contained multiple mutations in Pfdhfr and Pfdhps genes. The most prevalent haplotypes for Pfdhfr and Pfdhps were quadruple and double mutations, respectively. The quadruple and triple mutations of Pfdhfr and Pfdhps were common in western samples, whereas low frequency of triple and double mutations was found in southern samples, respectively. The Pfcrt 76T mutation was present in all samples examined. Malaria isolated from 2 different endemic regions of Thailand had high mutation rates in the Pfdhfr, Pfdhps, and Pfcrt genes. These findings highlighted the fixation of mutant alleles causing resistance of SP and CQ in this area. It is necessary to monitor the re-emergence of SP and CQ sensitive parasites in this area.

Fabrication of SMD Type PTC Thermistor with Multilayer Structure

  • Kim, Yong-Hyuk;Lee, Duck-Cuool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • PTC thermistors with multilayer structure were fabricated by internal electrode bonding technique in order to realize low resistance. MLPTC (Multilayer Positive Temperature Coefficient) possess various features, such as small size, low resistivity and large current. We describe the effect of additives on the PTC characteristics, voltage - current characteristics, temperature dependence of resistance and complex impedance spectra as a function of frequency range 100 Hz to 13MHz to determine grain boundary resistance. It was found that MLPTC thermistor has both highly nonlinear effects of temperature dependent resistance and voltage dependent current behaviors, which act as passive element with self-repair mechanisms. Decrease of room temperature resistance with increasing the number of layers was demonstrated to be a grain boundary effect. Switching characteristics of current were caused by heat capacity of PTC thermistor with multilayer structure. Switching times are lengthened by increasing the number of layers.

  • PDF

Design Methodology of Series Resonant Converter and Coil of Induction Heating Applications for Heating Low Resistance IH-Only Container (낮은 저항의 IH 전용용기를 가열할 수 있는 유도 가열 컨버터와 코일 설계)

  • Jeong, Si-Hoon;Park, Hwa-Pyoeng;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.24-31
    • /
    • 2018
  • An induction heating (IH) resonant converter, as well as its coil design method, is proposed in this study to improve the heat capability of low- and high-resistance IH vessels. Conventional IH resonant converters have been designed only for heating high-resistance containers designed for IH application. Thus, the primary current in the resonant tank becomes extremely high to transfer the rated power when the converter heats the low-resistance vessel. As a result, the rated power cannot be transferred due to overcurrent flows against the rated switch current. Hence, the optimal number of coil turns and proper operating frequency to heat high- and low-resistance vessels are proposed in this study by analyzing an IH load model. Simulation and experimental results using a 2.4 kW prototype resonant converter and its IH coil validate the proposed design.

A Rotating Flux Pump Employing a Magnetic Circuit and a Stabilized Coated Conductor HTS Stator

  • Jiang, Z.;Bumby, C.W.;Badcock, R.A.;Long, N.J.;Sung, H.J.;Park, M.
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.239-243
    • /
    • 2016
  • High temperature superconductor (HTS) magnet systems usually employ metal current leads which bridge between the cryogenic environment and room temperature. Such current leads are the dominant heat load for these magnet systems due to a combination of electrical resistance and heat conduction. HTS flux pumps enable large currents to be injected into a HTS magnet circuit without this heat load. We present results from an axial-type HTS mechanically rotating flux pump which employs a ferromagnetic circuit and a Cu-stabilized coated conductor (CC) HTS stator. We show the device can be described by a simple circuit model which was previously used to describe barrel-type flux pumps, where the model comprises an internal resistance due to dynamic resistance and a DC voltage source. Unlike previously reported devices, we show the internal resistance and DC voltage in the flux pump are not exactly proportional to frequency, and we ascribe this to the presence of eddy currents. We also show that this axial-type flux pump has superior current injection capability over barrel-type flux pumps which do not incorporate a magnetic circuit.