• Title/Summary/Keyword: Frequency of Occurrence of Rainfall

Search Result 84, Processing Time 0.024 seconds

Cause of Rockfall at Natural Monument Pohang Daljeon-ri Columnar Joint (천연기념물 포항 달전리 주상절리의 낙석 발생원인)

  • Kim, Jae Hwan;Kong, Dal-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.497-510
    • /
    • 2022
  • Monthly monitoring, 3D scan survey, and electrical resistivity survey were conducted from January 2018 to August 2022 to identify the cause of rockfall occurring in Daljeon-ri Columnar Joint (Natural Monument No. 415), Pohang. A total of 3,231 rocks fell from the columnar joint over the past 5 years, and 1,521 (47%) of the falling rocks were below 20 cm in length, 978 (30.3%) of 20-30 cm, and 732 (22.7%) of rocks over 30 cm. While the number of rockfalls by year has decreased since 2018, the frequency of rockfalls bigger than 30 cm tends to increase. Large-scale rockfalls occurred mainly during the thawing season (March-April) and the rainy season (June-July), and the analysis of the relationship between cumulative rainfall and rockfall occurrence showed that cumulative rainfall for 3 to 4 days is also closely related to the occurrence of rockfall. Smectite and illite, which are expansible clay minerals, were observed in XRD analysis of the slope material (filling minerals) in the columnar joint, and the presence of a fault fracture zone was confirmed in the electrical resistivity survey. In addition, the confirmed fault fracture zone and the maximum erosion point analyzed through 3D precision measurement coincided with the main rockfall occurrence point observed by the BTC-6PXD camera. Therefore, the main cause of rockfall at Daljeon-ri columnar joint in Pohang is a combination of internal factors (development of fault fracture zones and joints, weathering of rocks, presence of expansive clay minerals) and external factors (precipitation, rapid thawing phenomenon), resulting in large-scale rockfall. Meanwhile, it was also confirmed that the Pohang-Gyeongju earthquake, which was continuously raised, was not the main cause.

An Optimal Sewer Layout Model to Reduce Urban Inundation (도시침수 저감을 위한 최적 우수관망 설계 모형)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Jun, Hwan-Don
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.777-786
    • /
    • 2011
  • In the previous researches for storm sewer design, the flow path, pipe diameter and pipe slope were determined to minimize the construction cost. But in the sewer networks, the flows can be changed according to flow path. The current optimal sewer layout models have been focussed on satisfying the design inflow for sewer designs, whereas the models did not consider the occurrences of urban inundation from excessive rainfall events. However, in this research, the sewer networks are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the inflows in sewer pipes. Then, urban inundation can be reduced for excessive rainfall events. An Optimal Sewer Layout Model (OSLM) was developed to control and distribute the inflows in sewer networks and reduce urban inundation. The OSLM uses GA (Genetic Algorithm) to solve the optimal problem for sewer network design and SWMM (Storm Water Management Model) to hydraulic analysis. This model was applied to Hagye basin with 44 ha. As the applied results, in the optimal sewer network, the peak outflow at outlet was reduced to 7.1% for the design rainfall event with 30 minutes rainfall duration versus that of current sewer network, and the inundation occurrence was reduced to 24.2% for the rainfall event with 20 years frequency and 1 hour duration.

Geometric Characteristics of Landslides on Natural Terrain according to the Geological Condition (지질조건에 따른 자연사면 산사태의 기하학적 특성)

  • Kim, Kyeong-Su;Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Lee, Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.75-87
    • /
    • 2007
  • The recognitions of geometrical characteristics and occurrence conditions are very important to evaluate the land-slides in natural terrains. In this paper, the geometrical characteristics of landslides are analyzed according to a geo-logical condition in three landslides areas. The three landslides areas are classified to the geological condition. The three landslides areas are Jangheung, Sangju and Pohang. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. During a heavy rainfall of $150{\sim}588mm$ in these areas, 1,582 landslides have occurred in 1998. The geometrical characteristics according to the geological condition analyzed from the investigation of these landslides. The frequency of landslide is high exceedingly above 90% of a slope attitude, while the frequency is very low below 70%. The frequency of landslide is high exceedingly between $26^{\circ}$ and $30^{\circ}$ of slope angle, while the frequency is very low below $20^{\circ}$. The size of the landslides is ranged from several tens to several hundreds The length is ranged from 5 m to 300 m, and the width is ranged from 3 m to 50 m. Also, the depth is less than 1 m. Therefore, the landslides in these areas have small width, long length and shallow depth. The type of the landslides is changed from transitional slide at the scarp to debris flow at the low part of slope.

Development of technology to predict the impact of urban inundation due to climate change on urban transportation networks (기후변화에 따른 도시침수가 도시교통네트워크에 미치는 영향 예측 기술 개발)

  • Jeung, Se Jin;Hur, Dasom;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1091-1104
    • /
    • 2022
  • Climate change is predicted to increase the frequency and intensity of rainfall worldwide, and the pattern is changing due to inundation damage in urban areas due to rapid urbanization and industrialization. Accordingly, the impact assessment of climate change is mentioned as a very important factor in urban planning, and the World Meteorological Organization (WMO) is emphasizing the need for an impact forecast that considers the social and economic impacts that may arise from meteorological phenomena. In particular, in terms of traffic, the degradation of transport systems due to urban flooding is the most detrimental factor to society and is estimated to be around £100k per hour per major road affected. However, in the case of Korea, even if accurate forecasts and special warnings on the occurrence of meteorological disasters are currently provided, the effects are not properly conveyed. Therefore, in this study, high-resolution analysis and hydrological factors of each area are reflected in order to suggest the depth of flooding of urban floods and to cope with the damage that may affect vehicles, and the degree of flooding caused by rainfall and its effect on vehicle operation are investigated. decided it was necessary. Therefore, the calculation formula of rainfall-immersion depth-vehicle speed is presented using various machine learning techniques rather than simple linear regression. In addition, by applying the climate change scenario to the rainfall-inundation depth-vehicle speed calculation formula, it predicts the flooding of urban rivers during heavy rain, and evaluates possible traffic network disturbances due to road inundation considering the impact of future climate change. We want to develop technology for use in traffic flow planning.

Regional Frequency Analysis by Rainfalls using GEV Distribution (GEV 분포에 의한 강우자료의 지역빈도분석)

  • Maeng, Seung-Jin;Lee, Hyeon-Gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.403-407
    • /
    • 2006
  • This research aims to reduce severe damages to human beings and properties from floods that ravage Korea every year, by estimating right time to hydraulic structures based on the characteristics of variations in flood flows. To establish this permanent means for the flood mitigation, this research analyse design floods of various dams and hydraulic structures in connection with time of occurrence of the weather abnormalities in Korea. This research was derived the optimal regionalization of the precipitation data which can be classified by the climatologically and geographically homogeneous regions in Korea. Using the L-moment ratios and Kolmogorov-Smimov test, the underlying regional probability distribution was identified to be the GEV distribution among applied distributions. The regional and at-site analyses using L-moment for the design rainfall were tested by Monte Carlo simulation. Error tests were computed and compared with those resulting from at-site Monte Carlo simulation. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Assessment of Drought Severity over South Korea using Standardized Precipitation Evapo-transpiration Index (SPEI) (표준강수 증발산지수(SPEI)를 이용한 남한지역의 가뭄심도 평가)

  • Kim, Byung-Sik;Sung, Jang-Hyun;Kang, Hyun-Suk;Cho, Chun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.887-900
    • /
    • 2012
  • Drought is a non-negligible disaster of nature and it is mainly caused by rainfall shortage for a long time though there are many definitions of drought. 'Standard Precipitation Index' (SPI) that is widely used to express the level of meteorological drought intensity has a limit of not being able to consider the hydrological changes such as rainfall and evapotranspiration caused by climate change, because it does not consider the temperature-related variables other than the precipitation. Recently, however, 'Standardized Precipitation Evapotranspiration Index' (SPEI), a drought index of new concept which is similar to SPI but can reflect the effect of temperature variability as well as the rainfall change caused by climate variation, was developed. In this study, the changes of drought occurrence in South Korea were analyzed by applying SPEI for meteorological data (1973~2011) of 60 climate observatories under Korea Meteorological Administration (KMA). As the result of application, both of SPI and SPEI showed the trend of deepening drought in spring and winter and mitigating drought in summer for the entire nation, with SPI showing greater drought intensity than SPI. Also, SPI and SPEI with 12 months of duration showed that severe droughts with low frequency of around 6 years are generally being repeated.

Analysis of inundation and rainfall-runoff in mountainous small catchment using the MIKE model - Focusing on the Var river in France - (MIKE 모델을 이용한 산지소유역 강우유출 및 침수 분석 - 프랑스 Var river 유역을 중심으로 -)

  • Lee, Suwon;Jang, Dongwoo;Jung, Seungkwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Recently, due to the influence of climate change, the occurrence of damage to heavy rain is increasing around the world, and the frequency of heavy rain with a large amount of rain in a short period of time is also increasing. Heavy rains generate a large amount of outflow in a short time, causing flooding in the downstream part of the mountainous area before joining the small and medium-sized rivers. In order to reduce damage to downstream areas caused by flooding, it is very important to calculate the outflow of mountainous areas due to torrential rains. However, the sewage network flooding analysis, which is currently conducting the most analysis in Korea, uses the time and area method using the existing data rather than calculating the rainfall outflow in the mountainous area, which is difficult to determine that the soil characteristics of the region are accurately applied. Therefore, if the rainfall is analyzed for mountainous areas that can cause flooding in the downstream area in a short period of time due to large outflows, the accuracy of the analysis of flooding characteristics that can occur in the downstream area can be improved and used as data for evacuating residents and calculating the extent of damage. In order to calculate the rainfall outflow in the mountainous area, the rainfall outflow in the mountainous area was calculated using MIKE SHE among the MIKE series, and the flooding analysis in the downstream area was conducted through MIKE 21 FM (Flood model). Through this study, it was possible to confirm the amount of outflow and the time to reach downstream in the event of rainfall in the mountainous area, and the results of this analysis can be used to protect human and material resources through pre-evacuation in the downstream area in the future.

Analysis of Future Meteorological Drought Index Considering Climate Change in Han-River Basin (기후변화에 따른 한강유역의 기상학적 가뭄지수 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Han, Daegun;Choi, Changhyeon;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.432-447
    • /
    • 2016
  • The increased frequency of drought and flood due to climate change was a global problem. In particular, drought was recognized as a serious environmental, ecological, social, and economic disaster. Therefore, it is necessary to study the measures to prevent it. In this study, we will estimate the meteorological drought index in the Han River Basin and analyze the impact of climate change on drought. The change of the meteorological drought occurrence due to climate change in the Han River separated by the common drought and severe drought was analyzed using the Representative Concentration Pathways (RCPs) scenarios provided by the Intergovernmental Panel on Climate Change (IPCC). The years 1973 - 2010 were selected for analysis in the current period. Using the scenario, we separated the future period (Target I: 2011 - 2039, Target II: 2040 - 2069, Target III : 2070 - 2099). The number of occurrences of less than -1.0 and -1.5 standard precipitation index were analyzed by SPI 3, 6, 12. Looking at the results, trends in rainfall in the Han River was expected to increase from the current figures, the occurrence of drought is predicted to decline in the future. However, the number of drought occurrence was analyzed to increase toward long-term drought. The number of severe drought occurrences was usually larger than the common drought estimated. Additional studies may be considered in addition to the agricultural drought, hydrological drought, socio-economic drought. This will be done by using efficient water management. The results can be used as a basis for future drought analysis of the Han River.

Analysis of the Characteristics of Precipitation Over South Korea in Terms of the Associated Synoptic Patterns: A 30 Years Climatology (1973~2002) (종관적 특징에 따른 남한 강수 특성 분석: 30년 (1973~2002) 기후 통계)

  • Rha Deuk-Kyun;Kwak Chong-Heum;Suh Myoung-Seok;Hong Yoon
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.732-743
    • /
    • 2005
  • The characteristics of precipitation over South Korea from 1973 to 2002 were investigated. The synoptic patterns inducing precipitation are classified by 10 categories, according to the associated surface map analysis. The annual mean frequency of the total precipitation, its duration time and amount for 30 years are 179 times, 2.9 hours, and 7.1 mm, respectively. About $59\%$ of the total precipitation events were associated with a synoptic low. The dominant patterns are identified with respect to seasons: A synoptic mobile low pressure pattern is frequent in spring, fall, and winter, whereas low pressure embedded within the Changma and orography induced precipitation are dominant in summer and in winter. For the amount of precipitation, precipitation originated from tropical air associated with typhoon, tropical convergence, and Changma is more significant than that with other pressure patterns. The statistical elapse time reaching to 80 mm, which is the threshold amount of heavy rainfall watch at KMA, takes 12.9 hours after the onset of precipitation. The probability distribution function of the precipitation shows that the maximum probability for heavy rainfall is located at the south-coastal region of the Korean peninsula. It is also shown that the geographical distribution of the Korean peninsula plays an important role in occurrence of heavy rainfall. For example, heavy precipitation is frequently occurred at Youngdong area, when typhoon passes along the coastal region of the back borne mountains in the peninsula. The climatological classification of synoptic patterns associated with heavy rainfall over South Korea can be used to provide a guidance to operational forecast of heavy rainfall in KMA.

Characteristics of Norovirus Food Poisoning Outbreaks in Korea over the Past Ten Years and the Relation with Climate Factors (우리나라에서 지난 10년간 노로바이러스 식중독 발생의 특징과 기후요소와의 관련성)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.622-629
    • /
    • 2019
  • Objectives: The occurrence of norovirus food poisoning in South Korea has been reported since 2003. This study was performed to investigate the characteristics of norovirus food poisoning outbreaks in Korea from 2006 to 2015 and to analyze the relationship between these outbreaks and climate factors. Methods: Data on norovirus food poisoning outbreaks were obtained from the Korea Ministry of Food and Drug Safety. Data on climate factors were obtained from the Korea Meteorological Administration. Frequency analysis and Pearson's correlation analysis were adopted for this study. Results: During the study period, norovirus was the greatest contributing factor of food poisoning outbreaks. Approximately half of the outbreaks of norovirus food poisoning occurred in winter. Average temperature, highest and lowest temperatures, precipitation, number of days with rainfall, and humidity all had a significant negative correlation with monthly number of outbreaks of norovirus food poisoning (p<0.05). Among these, the lowest and average temperature showed higher correlation coefficients. However, the sum of the outbreaks in spring and autumn was similar to that of winter, and more than one-third occurred in group meal-service settings, including school lunches. This was strongly assumed as the use of norovirus-contaminated groundwater for preparation of meals in some settings. Conclusion: The cold and dry of the winter season in Korea may assist the transmission of norovirus. Also, the use of groundwater in group meal service is suspected of inducing a larger scale of norovirus food poisoning. Both health authorities and community-based prevention and control measures are required to respond to these complex etiological outbreaks.