• Title/Summary/Keyword: Frequency of Occurrence of Rainfall

Search Result 84, Processing Time 0.023 seconds

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 1. Change of Daily Rainfall Depth Distribution due to Different Monthly/Yearly Rainfall Depth (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석)

  • Yun, Yong-Nam;Yu, Cheon-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.617-625
    • /
    • 1999
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using General Circulation Models(GCMs) has shown the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. This changes in global water circulation pattern result in abnormal and more frequent meteorological events such as severe floods and droughts, generally more severe than the normal ones, which are now common around the world and is referred as a indirect proof of global warming. Korean peninsula also cannot be an exception and have had several extremes recently. The main objective of this research is to analyze the impact of global warming on the change of flood and drought frequency. Based on the assumption that now is a point in a continuously changing climate due to global warming, we analyzed the observed daily rainfall data to find out how the increase of annual rainfall amount affects the distribution of daily rainfall. Obviously, the more the annual rainfall depth, the more frequency of much daily rainfall, and vice versa. However, the analysis of the 17 points data of Keum river basin in Korea shows that especially the number of days of under 10mm or over 50mm daily rainfall depth is highly correlated with the amount of annual rainfall depth, not the number of dry days with their correlation coefficients quite high around 0.8 to 0.9.

  • PDF

Revised AMC for the Application of SCS Method: 2- Revised AMC (SCS 방법 적용을 위한 선행토양함수조건의 재설정: 2. 선행토양함수조건의 재설정)

  • Yoo, Chul-Sang;Park, Cheong-Hoon;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.963-972
    • /
    • 2005
  • This study searched the criterion of AMC with respect to the rainfall amount for the periods of antecedent 5 to 2 days. This criterion was decided as the rainfall amount with which the frequency of the observed CN(I) and CN(III) events being categorized as the true CN(I) and CW(III) become highest. Among four cases considered, the cases with antecedent 4 and 5 days provided a reasonable results, but the others not due to limited rainfall events available. For both cases with antecedent 4 and 5 days, the frequency of AMC-II increases, but that of AMC-III decreases significantly to become a more reasonable distribution. Among the cases with antecedent 4 and S days, the latter seems to be better as the occurrence of AMC-II and the relative frequency of CN(I) are higher. If adopting the rainfall amount of antecedent 5 days for the AMC, the criteria for AMC-I and AMC-III for the Jangpyung subbasin becomes 22 mm and 117 mm, respectively.

Analyses of Characteristics and Causes of Landslides due to Locally Concentrated Heavy Rainfall in Inje Area (국지성 집중호우로 인한 인제군 산사태 발생 특성 및 원인 분석)

  • Lee, Dong-Won;Byun, In-Ho;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.161-170
    • /
    • 2010
  • This paper is results of analyzing causes of damage and rainfall characteristics to investigate characteristics of landslide occurrence and its causes at Inje area in Gangwondo around July in 2006 through collection of related data, literature review and field reconnaissance. From results of analyzing the geometrical characteristics of landslide slope, the slope width of showing the most probable frequency were in the range of 10~50m and the most frequent slope angle was in the range of $30{\sim}40^{\circ}$. The most probable elevation of slope was 200~300m. For the slope direction of landslides, the most frequent directions were NW and SE.

  • PDF

Risk of Flood Damage Potential and Design Frequency (홍수피해발생 잠재위험도와 기왕최대강수량을 이용한 설계빈도의 연계)

  • Park, Seok Geun;Lee, Keon Haeng;Kyung, Min Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.489-499
    • /
    • 2006
  • The Potential Flood Damage (PFD) is widely used for representing the degree of potential of flood damage. However, this cannot be related with the design frequency of river basin and so we have difficulty in the use of water resources field. Therefore, in this study, the concept of Potential Risk for Flood Damage Occurrence (PRFD) was introduced and estimated, which can be related to the design frequency. The PRFD has three important elements of hazard, exposure, and vulnerability. The hazard means a probability of occurrence of flood event, the exposure represents the degree that the property is exposed in the flood hazard, and the vulnerability represents the degree of weakness of the measures for flood prevention. Those elements were devided into some sub-elements. The hazard is explained by the frequency based rainfall, the exposure has two sub-elements which are population density and official land price, and the vulnerability has two sub-elements which are undevelopedness index and ability of flood defence. Each sub-elements are estimated and the estimated values are rearranged in the range of 0 to 100. The Analytic Hierarchy Process (AHP) is also applied to determine weighting coefficients in the equation of PRFD. The PRFD for the Anyang river basin and the design frequency are estimated by using the maximum rainfall. The existing design frequency for Anyang river basin is in the range of 50 to 200. And the design frequency estimation result of PRFD of this study is in the range of 110 to 130. Therefore, the developed method for the estimation of PRFD and the design frequency for the administrative districts are used and the method for the watershed and the river channel are to be applied in the future study.

Railroad Disaster Prevention System and Railroad Weather-Related Accidents and incidents according to Precipitation (철도방재시스템과 강우에 인한 철도기상사고)

  • Pakr, Jong-Kil;Jung, Woo-Sik;Kim, Hi-Man;Kim, Eun-Byul;Lee, Jae-Su
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2014-2020
    • /
    • 2010
  • This paper aims to find out characteristics of railroad weather-related accidents and incidents and to proposes the plan of railroad disaster prevention according to the precipitation. For this, we make the database about the railroad weather-related accidents and incidents and analysis the relationship between the hourly and cumulative precipitation and railroad accidents. The results are as follows; The weather events that have the most occurrence frequency of railroad weather-related accidents and incidents is a rainfall of the precipitation and then the cause of that was the falling rocks and the collapsed roadbed. The rainfall patterns of collapsed roadbed were classified into 4 groups. When the variation of hourly rainfall is 10/15 mm/hr over, we need to consider the caution/stop of train operation and a speed limit, respectively.

  • PDF

Pilot Study on the Statistical Characteristics of a Railroad Weather-Related Accidents and Incidents in Korea (철도기상사고의 통계적 특성)

  • Park, Jong-Kil;Jung, Woo-Sik;Lee, Man-Ki;Kim, Hi-Man;Lee, Jae-Su
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1725-1731
    • /
    • 2010
  • This paper aims to find out the statistical characteristics of the railroad accidents by weather phenomena. For this, It is investigated occurrence frequency of railroad accidents and operation obstacles from 1996 to 2008 in Korea using the KROIS data and Korea railroad accidents reports. The results are as follows; The occurrence frequency of railroad accidents and operation obstacles decrease gradually, and most of railroad accidents is a railroad traffic accidents. The amount of damages by a railroad weather-related accidents is higher than the one of the railroad accidents and operation obstacles. Weather events which is influenced the railroad weather-related accidents and incidents are rainfall, snowfall, lightning, strong winds. And they have occurred a railroad weather-related accidents and incidents, such as rail obstruction, signal failure, and power supply failure.

  • PDF

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF

The Recent Increase in the Heavy Rainfall Events in August over the Korean Peninsula

  • Cha, Eun-Jeong;Kimoto, Masahide;Lee, Eun-Jeong;Jhun, Jong-Ghap
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.585-597
    • /
    • 2007
  • The characteristics of the rainfall events on the Korean peninsula have been investigated by means of regional and global observational data collected from 1954 to 2004 with an emphasis on extreme cases $80\;mm\;day^{-1}$. According to our analysis, long-term annual rainfall anomalies show an increasing trend. This trend is pronounced in the month of August, when both the amount of monthly rainfall and the frequency of extreme events increase significantly. Composite maps on August during the 8 wet years reveal warm SST anomalies over the eastern Philippine Sea which are associated with enhanced convection and vertical motion and intensified positive SLP over central Eurasia during August. The rainfall pattern suggests that the most significant increase in moisture supply over the southern parts of China and Korea in August is associated with positive SLP changes over Eurasia and negative SLP changes over the subtropical western Pacific off the east coast of south China. The frequent generation of typhoons over the warm eastern Philippine Sea and their tracks appear to influence the extreme rainfall events in Korea during the month of August. The typhoons in August mainly passed the western coast of Korea, resulting in the frequent occurrence of extreme rainfall events in this region. Furthermore, anomalous cyclonic circulations over the eastern Philippine Sea also promoted the generation of tropical cyclones. The position of pressure systems - positive SLP over Eurasia and negative SLP over the subtropical Pacific - in turn provided a pathway for typhoons. The moisture is then effectively transported further north toward Korea and east toward the southern parts of China during the extreme rainfall period.

An Empirical Model for Forecasting Alternaria Leaf Spot in Apple (사과 점무늬낙엽병(斑點落葉病)예찰을 위한 한 경험적 모델)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Seung-Chul
    • Korean journal of applied entomology
    • /
    • v.25 no.4 s.69
    • /
    • pp.221-228
    • /
    • 1986
  • An empirical model to predict initial disease occurrence and subsequent progress of Alternaria leaf spot was constructed based on the modified degree day temperature and frequency of rainfall in three years field experiments. Climatic factors were analized 10-day bases, beginning April 20 to the end of August, and were used as variables for model construction. Cumulative degree portion (CDP) that is over $10^{\circ}C$ in the daily average temperature was used as a parameter to determine the relationship between temperature and initial disease occurrence. Around one hundred and sixty of CDP was needed to initiate disease incidence. This value was considered as temperature threshhold. After reaching 160 CDP, time of initial occurrence was determined by frequency of rainfall. At least four times of rainfall were necessary to be accumulated for initial occurrence of the disease after passing temperature threshhold. Disease progress after initial incidence generally followed the pattern of frequency of rainfall accumulated in those periods. Apparent infection rate (r) in the general differential equation dx/dt=xr(1-x) for individual epidemics when x is disease proportion and t is time, was a linear function of accumulation rate of rainfall frequency (Rc) and was able to be directly estimated based on the equation r=1.06Rc-0.11($R^2=0.993$). Disease severity (x) after t time could be predicted using exponential equation $[x/(1-x)]=[x_0/(1-x)]e^{(b_0+b_1R_c)t}$ derived from the differential equation, when $x_0$ is initial disease, $b_0\;and\;b_1$ are constants. There was a significant linear relationship between disease progress and cumulative number of air-borne conidia of Alternaria mali. When the cumulative number of air-borne conidia was used as an independent variable to predict disease severity, accuracy of prediction was poor with $R^2=0.3328$.

  • PDF

A Study on the Meteorological Disaster in Korean Waters (기상재해연구-태풍과 해난-)

  • Park, Jong-Gil;Kim, Yu-Geun;An, Yeong-Hwa
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.56-63
    • /
    • 1991
  • This paper aims to describe the relation between the weather condition, especially typhoon and a shipwreck in Korean waters. For this study, it was investigated the statistical characteristics of a shipwreck due to the weather, pressure patterns governing the shipwreck in Korean waters. and the relation between the intensity of typhoon and the amount of a disaster. The results are summarized as follows: 1) The monthly occurrence frequency of a shipwreck was the heighest in July followed by February, March in descending order. 2) The pressure patterns governing the shipwreck were classified broadly into six types and pressure pattern which had most occurrence frequency of a shipwreck was Type V and then cames Type I, Type III and type IV in that order. 3) Occurence frequency of a shipwreck and the amount of a kinetic energy of typhoon have nothing to do with each other. In case of Wind-Typhoon that brought more a strong wind than a heavy rainfall, there were seriously affected ships and buildings by the wind.

  • PDF