• Title/Summary/Keyword: Frequency multiplier Frequency doubler

Search Result 16, Processing Time 0.024 seconds

Amplitude Distortion Characteristics of Microwave Frequency Multiplier (마이크로파 주파수 체배기의 진폭 왜곡 특성)

  • Choi, Won;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.294-297
    • /
    • 2003
  • This paper describes the design and the simulation of a frequency doubler for millimeter-wave applications using distributed amplifier technology. The designed frequency multiplier has 10% bandwidth at 58GHz output. This paper investigates nonlinear analysis of pHEMT frequency multipliers utilizing AM-AM and AM-PM distortion characteristics of frequency doubler. The conversion loss is 2.1dB and harmonic suppression is larger than 18.6dBc with 5dBm input power

  • PDF

Design of Reflector Type Frequency Doubler for Undesired Harmonic Suppression Using Harmonic Load Pull Simulation Technique

  • Jang, Jae-Woong;Kim, Yong-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.175-182
    • /
    • 2007
  • In this paper, a study on the reflector type frequency doubler, to suppress the undesired harmonics, is presented. A 12 to 24 GHz reflective frequency doubler is simulated and experimented. Design procedure of the frequency doubler with reflector is provided and the frequency doubler with good spectral purity is fabricated successfully. It has harmonic suppression of the $40{\sim}50\;dBc$ in the $1^{st}$ harmonic and the $50{\sim}60\;dB$ in the $3^{rd}$ harmonic with no additional filter. And, it has conversion gain with the input power of 0 dBm over bandwidth of 500 MHz. A NEC's ne71300(N) GaAs FET is used and the nonlinear model(EEFET3) using IC-CAP program is extracted for harmonic load pull simulation. Good agreement between simulated and measured results has been achieved.

Design of Broadband 12 ㎓ Active Frequency Doubler using PHEMT (PHEMT를 이용한 광대역 12 ㎓ 능동 주파수 체배기 설계)

  • 전종환;강성민;최재홍;구경헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.560-566
    • /
    • 2004
  • In this paper, active frequency doubler with broadband characteristics from 6 ㎓ to 12 ㎓ was designed and fabricated using PHEMT. The designed frequency multiplier has a bias point near pinch-off and a proposed series RC circuit between bias line and input matching network far the improvement of stability. With 0 ㏈m input power, second harmonic of 1.7 ㏈m at 12 ㎓ -27.5 ㏈c suppression of 6 ㎓ fundamental, -18 ㏈c suppression of 18 ㎓ 3rd harmonic, and the 3 ㏈ output bandwidth of 1,8 ㎓ have been measured.

High Output Power and High Fundamental Leakage Suppression Frequency Doubler MMIC for E-Band Transceiver

  • Chang, Dong-Pil;Yom, In-Bok
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.342-345
    • /
    • 2014
  • An active frequency doubler monolithic microwave integrated circuit (MMIC) for E-band transceiver applications is presented in this letter. This MMIC has been fabricated in a commercial $0.1-{\mu}m$ GaAs pseudomorphic high electron mobility transistor (pHEMT) process on a 2-mil thick substrate wafer. The fabricated MMIC chip has been measured to have a high output power performance of over 13 dBm with a high fundamental leakage suppression of more than 38 dBc in the frequency range of 71 to 86 GHz under an input signal condition of 10 dBm. A microstrip coupled line is used at the output circuit of the doubler section to implement impedance matching and simultaneously enhance the fundamental leakage suppression. The fabricated chip is has a size of $2.5mm{\times}1.2mm$.

A Low Close-in Phase Noise 2.4 GHz RF Hybrid Oscillator using a Frequency Multiplier

  • Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper proposes a 2.4 GHz RF oscillator with a very low close-in phase noise performance. This is composed of a low frequency crystal oscillator and three frequency multipliers such as two doubler (X2) and one tripler (X3). The proposed oscillator is implemented as a hybrid type circuit design using a discrete silicon bipolar transistor. The measurement results of the proposed oscillator structure show -115 dBc/Hz close-in phase noise at 10 kHz offset frequency, while only dissipating 5 mW from a 1-V supply. Its close-in phase noise level is very close to that of a low frequency crystal oscillator with little degradation of noise performance. The proposed structure which is consisted of a low frequency crystal oscillator and a frequency multiplier provides new method to implement a low power low close-in phase noise RF local oscillator.

Rectifier Design Using Distributed Greinacher Voltage Multiplier for High Frequency Wireless Power Transmission

  • Park, Joonwoo;Kim, Youngsub;Yoon, Young Joong;So, Joonho;Shin, Jinwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • This paper discusses the design of a high frequency Greinacher voltage multiplier as rectifier; it has a greater conversion efficiency and higher output direct current (DC) voltage at high power compared to a simple halfwave rectifier. Multiple diodes in the Greinacher voltage multiplier with distributed circuits consume excited power to the rectifier equally, thereby increasing the overall power capacity of the rectifier system. The proposed rectifiers are a Greinacher voltage doubler and a Greinacher voltage quadrupler, which consist of only diodes and distributed circuits for high frequency applications. For each rectifier, the RF-to-DC conversion efficiency and output DC voltage for each input power and load resistance are analyzed for the maximum conversion efficiency. The input power with maximum conversion efficiency of the designed Greinacher voltage doubler and quadrupler is 3 and 7 dB higher, respectively;than that of the halfwave rectifier.

Design of Inverse Class E 2.9 GHz/5.8 GHz Frequency Multiplier (역 E급 2.9 GHz/5.8 GHz 주파수 체배기 설계)

  • Kim, Tae-Hoon;Joo, Jae-Hyun;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2011
  • In this paper, an inverse class E frequency multiplier has been designed to generate 5.8 GHz wireless LAN signal by multiplying 2.9 GHz input. The inverse class E frequency multiplier is operating with low inductance value and low peak drain voltage than the class E frequency multiplier. Measurement shows the output power of 21 dBm, the mutiplier gain of 6 dB, and the PAE(Power Added Efficiency) of 35 % with 15 dBm input power.

A New Structure Frequency Doubler Using Phase Delay Line (위상 지연 선로를 이용한 새로운 구조의 주파수 2체배기)

  • Cho, Seung-Yong;Lee, Kyoung-Hak;Kim, Yong-Hwan;Do, Ji-Hoon;Lee, Hyung-Kyu;Hong, Ui-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.213-219
    • /
    • 2007
  • In this paper, A novel structure of frequency doubler using Phase Delay line and $90^{\circ}$ Hybrid coupler at harmonic output have been designed and implemented to improve suppression. Proposed structure of frequency doubler improve output. coupling and fundamental suppression. Active frequency doubler with band from $2.13{\sim}2.15GHz\;to\;4.26{\sim}4.3GHz$ was designed and fabricated with 10dBm input power, 0.79dB conversion gain and -55.54dBc suppression at fundamental frequency, -44.76dBc suppression at third harmonic frequency 6.42GHz and -39.18dBc suppression at fourth harmonic frequency 8.56GHz.

Characteristics Analysis of Class E Frequency Multiplier using FET Switch Model (FET 스위치 모델을 이용한 E급 주파수 체배기 특성 해석)

  • Joo, Jae-Hyun;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.596-601
    • /
    • 2011
  • This paper has presented research results for the switching mode class E frequency multiplier that has simple circuit structure and high efficiency. Frequency multiplication is coming from the nonlinearity of the active component, and this paper models the FET active component as a simple switch and some parasitics to analyze the characteristics. The matching component parameters for the class E frequency doubler have been derived with modeling the FET as a input controlled switch and some parasitics. A circuit simulator, ADS, is used to simulate the output voltage and current waveform and efficiency with the variation of the parasitic values. With 2.9GHz input and 2V bias, the drain efficiency has been decreased from 98% to 28% with changing the parasitic capacitance from 0pF to 1pF at 5.8GHz output, which shows that the parasitic capacitance CP has the most significant effect on the efficiency among the parasitics of FET.

Design of Dual Mode Amplifying Block Using Frequency Doubler (주파수 체배기를 이용한 이중 모우드 증폭부 설계)

  • Kang, Sung-Min;Choi, Jae-Hong;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.127-132
    • /
    • 2006
  • This paper presents a dual-mode amplifier which operates as amplifier or frequency multiplier according to the input frequency. It satisfies the 802.11a/b/g frequency band of wireless LAN standard. A conventional dual-band wireless LAN transmitter consists of the separating power amplifiers operating at each frequency band, but the proposed dual-mode amplifier operates as an amplifier for the 802.11b/g signal and as a frequency multiplier for the 802.11a signal according to each LAN bias condition. The amplifier mode shows the gain of 13dB, the PldB of 17dBm and second harmonic suppression of below -37dBc. And the frequency-doubler mode shows the gain of 3.3dB, the output power of 7.3dBm and third harmonic suppression of below -50dBr.