• Title/Summary/Keyword: Frequency gain

Search Result 2,417, Processing Time 0.03 seconds

Broadband 8 dBi Double Dipole Quasi-Yagi Antenna Using 4×2 Meanderline Array Structure (4×2 미앤더라인 배열 구조를 이용한 광대역 8 dBi 이중 다이폴 준-야기 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.232-237
    • /
    • 2024
  • In this paper, a broadband double dipole quasi-Yagi antenna using a 4×2 meander line array structure for maintaining 8 dBi gain was studied. The 4×2 meanderline array structure consists of a unit cell in the shape of a meanderline conductor, and it was placed above the second dipole antenna of the double dipole quasi-Yagi antenna. A double dipole quasi-Yagi antenna with generally used multiple strip directors was designed on an FR4 substrate with the same size, and the input reflection coefficient and gain characteristics were compared. Comparison results showed that the impedance frequency bandwidth increased by 6.3% compared to when using the multiple strip directors, the frequency bandwidth with a gain of 8 dBi or more increased by 10.1%, and average gain also slightly increased. The frequency band of the fabricated antenna for a voltage standing wave ratio less than 2 was 1.548-2.846 GHz(59.1%), and gain was measured to be more than 8 dBi in the 1.6-2.8 GHz band.

Variable gain LNA Design for 2.4GHz Wireless LAN (2.4GHz 무선랜용 가변이득 저잡음 증폭기 설계)

  • 강태영;박영호;임지훈;박정호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.621-624
    • /
    • 2003
  • In this paper, two Cascode Low Noise Variable Gain Amplifiers are proposed for wide dynamic range and constant Noise Figure for frequency range of 2.4GHz. Designed Variable Gain Low Noise Amplifier are for Wireless Local Area Network (WLAN) applications. A gain is higher than 17dB and the noise figure is approximately 1.3dB and the input VSWR is better than 2:1.

  • PDF

Study on a combined televisin Receiving Antenna (전대역 TV 전파수신 안테나의 개발연구)

  • 박정기;이두수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.4
    • /
    • pp.9-16
    • /
    • 1974
  • The low channels with frequency range of 54~88MHz and the high channels with frequency range if 174~216 MHz are in use for TV broadcasting in Korea. Since the ratio of the highest frequency to the lowest frequency is 4 to 1, only a logarithmic periodic antenna cou1d cover such an wide frequency range. But, this log-periodic antenna should be big in size. Studies have been done on an antenna of small size with reasonable gain which combines through a channel filter a LPD antenna if low channel with boom length of 2m and a LPD antenna of high channel with boom length of 1.8m. The whole antenna is connected to feeder line through a talun. Experiment shows that the gain of low and high channels is 7 dB and 9 dB respectively, which are lower than theoretical values br nomore than ldB. The difference seemed to come from slight impedance mismatches between antennas and feeder lines, loss in the filter and measurement errors.

  • PDF

A Study on Frequency Response of GaAs MESFET with different Temperatures (온도변화에 따른 GaAs MESFET의 주파수 특성에 관한 연구)

  • 정태오;박지홍;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.550-553
    • /
    • 2001
  • In this study, unity current gain frequency f$\_$T/ of GaAs MESFET is predicted with different temperatures up to 400 $^{\circ}C$. Temperature dependence parameters of the device including intrinsic carrier concentration n$\_$i/ effective mass, depletion width are considered to be temperature dependent. Small signal parameters such as gate-source, gate dran capacitances C$\_$gs/ C$\_$gd/ are correlated with transconductance g$\_$m/ to predict the unity current gain frequency. The extrinsic capacitance which plays an important roles in high frequency region has been taken into consideration in evaluating total capacitance by using elliptic integral through the substrate. From the results, f$\_$T/ decreases as the temperature increases due to the increase of small signal capacitances and the mobility degradation. Finally the extrinsic elements of capacitances have been proved to be critical in deciding f$\_$T/ which are originated from the design rule of the device.

  • PDF

Noise Suppression Using Normalized Time-Frequency Bin Average and Modified Gain Function for Speech Enhancement in Nonstationary Noisy Environments

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.1-10
    • /
    • 2008
  • A noise suppression algorithm is proposed for nonstationary noisy environments. The proposed algorithm is different from the conventional approaches such as the spectral subtraction algorithm and the minimum statistics noise estimation algorithm in that it classifies speech and noise signals in time-frequency bins. It calculates the ratio of the variance of the noisy power spectrum in time-frequency bins to its normalized time-frequency average. If the ratio is greater than an adaptive threshold, speech is considered to be present. Our adaptive algorithm tracks the threshold and controls the trade-off between residual noise and distortion. The estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the advantages of simplicity and light computational load for estimating the noise. This algorithm reduces the residual noise significantly, and is superior to the conventional methods.

Gain Enhancement of Double Dipole Quasi-Yagi Antenna Using Meanderline Array Structure (미앤더라인 배열 구조를 이용한 이중 다이폴 준-야기 안테나의 이득 향상)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.447-452
    • /
    • 2023
  • In this paper, gain enhancement of a double dipole quasi-Yagi antenna using a meanderline array structure was studied. A 4×1 meanderline array structure consisting of a meanderline conductor- shaped unit cell is located above the second dipole of the double dipole quasi-Yagi antenna. It was designed to have gain over 7 dBi in the frequency range between 1.70 and 2.70 GHz in order to compare the performance with the case using a conventional strip director. As a result of comparison, the average gain of the double dipole quasi-yagi antenna with the proposed meander line array structure was larger compared to the case with the conventional strip director. A double dipole quasi-Yagi antenna using the proposed meanderline array structure was fabricated on an FR4 substrate and its characteristics were compared with the simulation results. Experiment results show that the frequency band for a VSWR less than 2 was 1.55-2.82 GHz, and the frequency band for gain over 7 dBi was measured to be 1.54-2.83 GHz. The frequency bandwidth with gain over 7 dBi increased, and average gain also slightly increased, compared to the conventional case using a strip director.

Design and Fabrication of Low-Power, High-Frequency, High-Performance Magnetic Thin Film Transformer (저전력, 고주파, 고효율 자성박막 변압기 설계 및 제작에 대한 연구)

  • Yun, Ui-Jung;Jeong, Myeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.11
    • /
    • pp.555-561
    • /
    • 2001
  • In this paper, the low power (1.5 W) solenoid-type magnetic thin-film transformers utilizing a $Ni_{81}Fe_{19)$ core material were designed and fabricated for 5 MHz-drive DC-DC converter application. The $20\mum$ thick copper films were used as the coils. The transformers fabricated in this work have the sizes of $3.08 mm\times25.5 mm\; and\; 6.15 mm\times12.75 mm.$ The optimum design of solenoid-type magnetic thin film transformers was performed utilizing the conventional equations, a Maxwell computer simulator (Ansoft HFSS V7.0 for PC), and parameters obtained from the magnetic properties of NiFe magnetic core materials. frequency characteristics of inductance, dc resistance (R), coupling factor (k) and gain of developed transformers were measured using HP4194A impedance and gain-phase analyzer. The fabricated transformers with the size of $6.15 mm\time12.75 mm$ exhibit the inductance of $0.83 \muH$, the dc resistance of $2.3\Omega$$\Omega$, the k of 0.91 and the gain of -1 dB at 5 MHz, which show the comparable results to those reported in the recent literatures. The measured high-frequency characteristics for the fabricated transformers agreed well with those obtained by theoretical calculations .

  • PDF

Limiting CPU Frequency Scaling Considering Main Memory Accesses (주메모리 접근을 고려한 CPU 주파수 조정 제한)

  • Park, Moonju
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.483-491
    • /
    • 2014
  • Contemporary computer systems exploits DVFS (Dynamic Voltage/Frequency Scaling) technology for balancing performance and power consumption. The efficiency of DVFS depends on how much performance we get for larger power consumption due to elevated CPU frequency. Especially for memory-bounded applications, higher CPU frequency often does not result in higher performance. In this paper, we present an upper bound of CPU frequency scaling based on memory accesses. It is observed that the performance gain due to higher CPU frequency is limited by memory accesses (last level cache misses) per instructions by experiments. Using the results, we present the CPU frequency upper bound with little performance gain. Experimental results show that for a memory-bounded application, applying the frequency upper bound enhances the energy efficiency of the application by above 30%.

Influence of Dietary Lipid Level and Feeding Frequency on the Growth and Body Composition of Juvenile Fancy Carp Cyprinus carpio var. koi (사료의 지질함량과 공급횟수가 비단잉어(Cyprinus carpio var. koi) 치어의 성장 및 체조성에 미치는 영향)

  • Kim, Yi-Oh;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.745-749
    • /
    • 2017
  • We investigated the effects of different dietary lipid levels (7% or 14%) and feeding frequency (1-4 meals per day) on the growth performance and body composition of juvenile fancy carp Cyprinus carpio var. koi. Three replicate groups of fish (initial mean weight, 11.7 g) were fed to visual satiety with sinking dry pellet diets for 8 weeks. Neither feeding frequency nor lipid level affected fish survival. Weight gain was affected by feeding frequency but not dietary lipid level. Weight gain significantly increased with increased feeding frequency. Feed efficiency and protein efficiency ratio were affected by feeding frequency, but not dietary lipid level. Daily feed intake was affected by feeding frequency and dietary lipid level. Whole body moisture, crude lipid and ash contents were affected by feeding frequency, but not dietary lipid level. Based on these results, we conclude that the appropriate feeding frequency for the optimum growth of fancy carp fingerlings is four meals per day using sinking dry pellet.

Implementation of low-noise, wideband ultrasound receiver for high-frequency ultrasound imaging (고주파수 초음파 영상을 위한 저잡음·광대역 수신 시스템 구현)

  • Moon, Ju-Young;Lee, Junsu;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.238-246
    • /
    • 2017
  • High frequency ultrasound imaging typically suffers from low sensitivity due to the small aperture of high frequency transducers and shallow imaging depth due to the frequency-dependent attenuation of ultrasound. These limitations should be overcome to obtain high-frequency, high- resolution ultrasound images. One practical solution to the problems is a high-performance signal receiver capable of detecting a very small signal and amplifying the signal with minimal electronic noise addition. This paper reports a recently developed low-noise, wideband ultrasound receiver for high-frequency, high-resolution ultrasound imaging. The developed receiver has an amplification gain of up to 73 dB and a variable amplification gain range of 48 dB over an operating frequency of 80 MHz. Also, it has an amplification gain flatness of ${\pm}1dB$. Due to these high performances, the developed receiver has a signal-to-noise ratio of at least 8.4 dB and a contrast-to-noise ratio of at least 3.7 dB higher than commercial receivers.