• Title/Summary/Keyword: Frequency gain

Search Result 2,399, Processing Time 0.035 seconds

Study on Advanced Frequency Estimation Technique using Gain Compensation

  • Park, Chul-Won;Shin, Dong-Kwang;Kim, Chul-Hwan;Kim, Hak-Man;Kim, Yoon-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.439-446
    • /
    • 2011
  • Frequency is an important operating parameter for the protection, control, and stability of a power system. Thus, it must be maintained very close to its nominal frequency. Due to the sudden change in generation and loads or faults in a power system, however, frequency deviates from its nominal value. An accurate monitoring of the power frequency is essential for optimum operation and prevention of wide area blackout. Most conventional frequency estimation schemes are based on the DFT filter. In these schemes, the gain error could cause defects when the frequency deviates from the nominal value. We present an advanced frequency estimation technique using gain compensation to enhance the DFT filter-based technique. The proposed technique can reduce the gain error caused when the frequency deviates from the nominal value. Simulation studies are performed using both the data from EMTP-RV software and the user-defined arbitrary signals to demonstrate the effectiveness of the proposed algorithm. Results show that the proposed algorithm achieves good performance under both steady state tests and dynamic conditions.

Double-Layered Frequency Selective Surface Superstrate Using Ring Slot and Dipole-Shaped Unit Cell Structure

  • Lee, Hong-Min;Kim, Yong-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2010
  • In this paper, a double-layered frequency selective surface(FSS) superstrate was built and tested. The unit cell of the proposed FSS consists of a ring slot and a dipole-shaped structure and shows a complementary frequency response. Each unit cell is printed on two sides of a substrate. By using these double-layered structures, the first resonant frequency of the pass-band can be lowered. As a result, the size of the unit cell is minimized and the spacing between the other cells is reduced. The proposed FSS-dipole composite antenna is designed for the gain enhancement of wide-band code division multiple access(WCDMA) frequency bands(1.92~2.17 GHz) with a low quality factor(Q=0.17). To verify the gain enhancement performance of the FSS, an FSS-dipole composite antenna was created. Although the FSS layer enhances the gain of the primary radiation source of the dipole antenna, the FSS-dipole complex antenna cannot show a uniform gain over the entire desired frequency band. The experimental results show a gain enhancement of 3 dBi with an FSS superstrate in the WCDMA frequency band.

Advanced Frequency Estimation Technique using Gain Compensation (이득 보상에 의한 개선된 주파수 추정 알고리즘)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Frequency is an important operating parameter of a power system. Due to the sudden change in generation and loads or faults in power system, the frequency is supposed to deviate from its nominal value. It is essential that the frequency of a power system be maintained very close to its nominal frequency. And monitoring and an accurate estimation of the power frequency by timing synchronized signal provided by FDR is essential to optimum operation and prevention for wide area blackout. As most conventional frequency estimation schemes are based on DFT filter, it has been pointed out that the gain error by change in magnitude could cause the defects when the power frequency is deviated from nominal value. In this paper, an advanced frequency estimation scheme using gain compensation for fault disturbance recorders (FDR) is presented. The proposed scheme can reduce the gain error caused when the power frequency is deviated from nominal value. Various simulation using both the data from EMTP package and user's defined arbitrary signals are performed to demonstrate the effectiveness of the proposed scheme. The simulation results show that the proposed scheme can provide better accuracy and higher robustness to harmonics and noise under both steady state tests and dynamic conditions.

A 1.5V CMOS High Frequency Operational Amplifier for High Frequency Signal Processing Systems. (고주파 신호처리 시스템을 위한 1.5V CMOS 고주파 연산증폭기)

  • 박광민;김은성;김두용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1117-1120
    • /
    • 2003
  • In this paper, a 1.5V CMOS high frequency operational amplifier for high frequency signal processing systems is presented. For obtaining the high gain and the high unity gain frequency with the 1.5V supply voltage, the op-amp is designed with simple two stages which are consisting of the rail-to-rail differential input stage and the class-AB output stage. The designed op-amp operates with the 1.5V supply voltage, and shows well the push-pull class-AB operation. The simulation results show the DC open loop gain of 77dB and the unity gain frequency of 100MHz for the 1㏁ ┃ 10pF load. When the resistive load R$_1$. is varied from 1㏁ to 1 ㏀, the DC open loop gain decreases by only 4dB.

  • PDF

Performance Evaluation of Advanced Frequency Estimation Technique using 765kV Modeling Data (765kV 모델링 데이터에 의한 개선된 주파수 추정기법의 성능 평가)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.253-257
    • /
    • 2010
  • The frequency is an important operation parameter for the control, protection, and stability of a power system. The frequency as a key index of power quality can be indicative of system abnormal conditions and disturbances. Due to the sudden change in generation and loads or faults in power system, the frequency is supposed to deviate from its nominal value. It is essential that the frequency must be maintained very close to its nominal frequency. An accurate monitoring of the power frequency is essential to optimal operation and prevention for wide area blackout. As most conventional frequency estimation schemes are based on DFT filter, it has been pointed out that the gain error could cause defects when the frequency is deviated from nominal value. This paper presents an advanced frequency estimation technique using gain compensation to improve the performance of DFT filter based techniques. To evaluate performance of the proposed algorithm, the 765kV T/L system in Korea is simulated by EMTP-RV software. The proposed technique can reduce the gain error caused when the power system frequency deviates from nominal value.

Stability Improvement of Distributed Power Generation Systems with an LCL-Filter Using Gain Scheduling Based on Grid Impedance Estimations

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.599-605
    • /
    • 2011
  • This paper proposes a gain scheduling method that improves the stability of grid-connected systems employing an LCL-filter. The method adjusts the current controller gain through an estimation of the grid impedance in order to reduce the resonance that occurs when using an LCL-filter to reduce switching harmonics. An LCL-filter typically has a frequency spectrum with a resonance peak. A change of the grid-impedance results in a change to the resonant frequency. Therefore an LCL-filter needs a damping method that is applicable when changing the grid impedance for stable system control. The proposed method instantaneously estimates the grid impedance and observes the resonant frequency at the same time. Consequently, the proposed method adjusts the current controller gain using a gain scheduling method in order to guarantee current controller stability when a change in the resonant frequency occurs. The effectiveness of the proposed method has been verified by simulations and experimental results.

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

Analysis of nonlinear gain in modulation characteristics of semiconductor lasers (반도체 레이저의 변조특성에서 비선형 이득에 관한 연구)

  • 엄진섭;김창봉
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.93-100
    • /
    • 1998
  • In this paper we analyze the effect of nonlinear gain on laser modulation characteristics applying a small-signal analysis to the rate equation which includes a nonlinear gain term. Also we analyze the resonance frequency and the damping factor which determine laser modulation characteristics, define K factor which is the proportionality factor between resonance frequency and damping factor, and conclude that the decrease in K factor is due to increases in differential gain and no correlation between K factor and nonlinear gain is identified.

  • PDF

Analysis of characteristics of PHEMT's with gate recess etching method (게이트 리세스 식각 방법에 따른 PHEMT 특성 변화)

  • 이한신;임병옥;김성찬;신동훈;전영훈;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.249-252
    • /
    • 2002
  • we have studied the characteristics of PHEMT's with gate recess etching method. The DC characterization of PHTMT fabricated with the wide single recess methods is a maximum drain current density of 319.4 ㎃/mm and a peak transconductance of 336.7 ㎳/mm. The RF measurements were obtained in the frequency range of 1~50GHz. At 50GHz, 3.69dB of 521 gain were obtained and a current gain cut-off frequency(f$_{T}$) of 113 CH and a maximum frequency of oscillation(f$_{max}$) of 172 Ghz were achieved from this device. On the other hand, a maximum drain current of 367 mA/mm, a peak transconduclancc of 504.6 mS/mm, S$_{21}$ gain of 2.94 dB, a current gain cut-off frequency(f$_{T}$) of 101 CH and a maximum frequency of oscillation(f$_{max}$) of 113 fa were achieved from the PHEMT's fabricated by the .narrow single recess methods.methods.

  • PDF

Design of Wide-band VCO with Improved Frequency Gain Characteristics (개선된 주파수 이득 특성을 갖는 광대역 전압 제어 발진기의 설계)

  • Ahn, Tae-Won;Lee, Won-Seok;Moon, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.431-432
    • /
    • 2007
  • A general method for both reduced VCO gain ($K_{vco}$) and wide frequency band is to use the switched-capacitor bank LC VCO. However, $K_{vco}$ can fluctuate widely in the wide oscillation frequency range of the VCO. In this paper, a design of wide-band VCO with improved frequency-voltage gain performance is presented. Optimized multiple varacter switching technique is used for reducing its frequency-voltage gain variation.

  • PDF