• Title/Summary/Keyword: Frequency difference of arrival

Search Result 71, Processing Time 0.023 seconds

Cramér-Rao Lower Bound (CRLB) Analysis for Unmanned Aerial Vehicle (UAV) Tracking with Randomly Distributed Ground Stations Using FDOA Measurements (다수의 지상국(GS)을 이용한 무인 항공기(UAV) 추적 FDOA 기반의 CRLB 성능 분석 연구)

  • Min, Byoung-Yoon;An, Chan-Ho;Hong, Seok-Jun;Jang, Jeen-Sang;Kim, Dong-Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.234-240
    • /
    • 2011
  • In this paper, the performances of Cram$\acute{e}$r-Rao Lower Bound (CRLB) with Frequency Difference of Arrival (FDOA) measurements for Unmanned Aerial Vehicle (UAV) tracking are investigated. We focus on two cases: the influence on CRLB with FDOA measurements collected by time, and random distribution of Ground Stations (GSs). We derived the performance by gauging the size of CRLB through Complementary Cumulative Distribution Function (CCDF). From the simulation results, broader distribution of GSs and FDOA measurements by longer time bring about better performance.

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

Estimation Technique of Time Difference of Acoustic Signal in Underwater Environments (수중 환경에서의 음향 신호의 시간 차이 추정 기법)

  • Lee, Young-Pil;Moon, Yong-Seon;Ko, Nak-Yong;Choi, Hyun-Taek;Lee, Jeong-Gu;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • Recently, UWAC (underwater acoustic communication) has been studied by many scholars and researchers. DS-CDMA, OFDM (orthogonal-frequency division multiplexing), and MIMO (multi-input multi-output), modulation and error correction, and others techniques that can transmit high-speed data are used in UWAC. In this paper, we first briefly present the theoretical background of estimating the arrival time of the first non-background segment in both signals and calculate the temporal difference. We also present the initial experimental result of estimating the arrival time.

Localization of partial discharge in power transformer by detecting UHF PD signal (UHF 부분방전 신호를 이용한 전력용 변압기 내부의 부분방전 위치 추정)

  • Ju, Hyung-Jun;Goo, Seun-Gun;Han, Ki-Sun;Park, Ki-Jun;Yoon, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.147-148
    • /
    • 2008
  • In this paper two kinds of techniques were compared for localization of PD(partial discharge) in power transformer and more useful method was suggested. Both of them, the time of arrival and the energy content method, were tested in 154kV single phase experimental transformer using UHF signal measurement. The former was using the difference of arrival time of recorded signals from four UHF sensors, the latter was based on the energy content in frequency spectra of signals detected at all sensors.

  • PDF

Position Estimation of Underwater Acoustic Source Using Pulsed CW Signal (Pulsed CW 신호를 사용하는 수중 음원의 위치 추정을 위한 시간지연차 추정법)

  • 최영근;손권;도경철;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.514-520
    • /
    • 2004
  • There are many techniques for underwater source localization. These are the methods based on TDOA (Time Difference Of Arrival) estimation. beamforming techniques and high resolution techniques, etc. In this Paper we estimate the underwater source position using MCPSP (Modified Cross Power Spectrum Phase) function that is calculated on frequency domain using sensors of small number. However, the performances of the localizing method based on MCPSP function drops greatly in the case of CW (Continuous Wave) signal . In this Paper we proposed the TDOA estimation method for pulsed CW signal. In the Proposed method we composed of new segment including a edge of ping. This segment was computed by short-time energy detection. With theoretical representation the performances of the proposed method were analyzed under various environment.

Radar identification by scan period validation (스캔주기 유효성 판별에 의한 레이더 식별)

  • Kim, Gwan-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.17-22
    • /
    • 2021
  • Radar signal analysis of electronic warfare is a technique for identifying a radar type by signal parameters(direction, radion frequency, pulse repetition interval, pulse width, scan period..) extracted from a received radar pulse. However as the modern radar and new threat environments is advanced, radar identification ambiguity arises in the process of identifying the types of radars. In this paper, we analyze the problems of the existing method and propose a new method. This technique determines the validity of the scan period by the difference in the arrival time of the radar pulse and the minimum number of scan period discrimination. Experiments proved that the scan cycle results are derived regardless of the RMS((Root Mean Square) of the input amplitude.

Improvement of CAF estimation performance (CAF 계산의 효율성 개선과 성능 향상)

  • Cho, Se-Young;Kim, Soo-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • In this paper, we introduce a simulation result of cross ambiguity function (CAF) using time difference of arrival and frequency difference of arrival. This method is generally used to find a geographical location of the unknown radio transmitter. If multiple signals with the same source information are arrived at a receiver via different paths, then they will have different time delays and Doppler shifts. We can estimate the CAF by using these characteristics, and estimate the location of the unknown transmitter. This paper introduces a technique to improve the estimation performance of CAF.

  • PDF

Monitoring Pipe Thinning Using Time-frequency Analysis (시간-주파수 기법을 이용한 배관 감육 감시 방법)

  • Sohn, Chang-Ho;Park, Jin-Ho;Yoon, Doo-Byung;Chong, Ui-Pil;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1224-1230
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time -frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

Algorithms for Localization of a Moving Target in RFID Systems (RFID 시스템에서 이동체의 위치 추적을 위한 알고리즘)

  • Joo, Un-Gi
    • IE interfaces
    • /
    • v.23 no.3
    • /
    • pp.239-245
    • /
    • 2010
  • This paper considers a localization problem of a moving tag on RFID(Radio Frequency Identification) systems, where a positioning engine collects TDOA(Time-difference of Arrival) signal from a target tag to estimate the position of the tag. To localize the tag in the RFID system, we develop two heuristic algorithms and evaluate their performance in the estimation error and computational time by using randomly generated numerical examples. Based upon the performance evaluation, we can conclude our algorithms are valuable for localization the moving target.

Estimation and Analysis of Two Moving Platform Passive Emitter Location Using T/FDOA and DOA (이동 수신기 환경에서 연속된 T/FDOA와 DOA를 이용한 고정 신호원의 위치 추정 방법)

  • Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.121-131
    • /
    • 2015
  • Passive emitter localization is preferred to use a small number of receivers as possible for the efficiency of strategic management in the field of modern electronic warfare support. Accurate emitter localization can be expected when utilizing continuous measurable parameters and a appropriate combination of theirs. For this reason, we compare CRLB (Cramer-Rao lower bound) of two moving platform with various measurable parameters to choose a appropriate combination of parameters for a better localization performance. And we propose the passive emitter localization method based on Levenberg-Marquardt algorithm with combined TDOA/FDOA and DOA to achieve better accuracy of emitter localization which is located on the ground and stationary. In addition, we present a method for determining the initial emitter position for LM algorithm's input to avoid the divergence of estimation and local minimum.