• Title/Summary/Keyword: Frequency Sensitivity

Search Result 1,517, Processing Time 0.028 seconds

Airbag Accelerometers Using Silicon Epitaxial Layers (실리콘 에피층을 이용한 자동차 에어백용 가속도계)

  • 고종수;김규현;이창렬;조영호;이귀로;곽병만
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.9-15
    • /
    • 1996
  • A silicon microaccelerometer is designed and fabricated using silicon epitaxial layers for automotive electronic airbag applications. A cantilever structure is chosen for high sensitivity and piezoresistive detection method is adopted for circuit simplicity and low cost. An optimum design is used to find optimum microstructure sizes for maximum sensitivity subject to performance requirements and design constraints on natural frequency, damping ratio, maximum allowable stress and microfabrication limitations. The microaccelerometer is fabricated by micromachining processing steps, composed of material-selective and orientation-dependent chemical etching techniques. Fabricated prototype shows a sensitivity of 88.6$\mu\textrm{V}$/g within a resonant frequency of 1.75KHz. Estimated performance of the microaccelerometer is compared with measured one. Discrepancy between the theoretical values and the experimental values is discussed together with possible sources of the errors.

  • PDF

Analysis of Effects of Phase Noise in Radar System (위상잡음이 레이더 시스템에 미치는 영향 분석)

  • Park, Jinsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.373-381
    • /
    • 2013
  • In this paper, the effects of phase noise on the radar system were analyzed in terms of 3 point of view. The impact(s) on the compressed pulse waveform, the FMICW(Frequency Modulated Interrupted Continuous Wave) radar performance and the receiver sensitivity were investigated. From the investigation, it was indicated that the phase noise over 10 kHz offset frequency makes the side lobe level of compressed pulse worse. Also it was founded that the FMICW radar performance, especially at the noise level of range profile, is related to the phase noise. Finally, the investigation showed that the phase noise at local oscillator affects the receiver sensitivity.

Optimal Design of Suspension for Micro Optical Disk Drive (마이크로 광디스크 드라이브 서스펜션의 최적 설계)

  • Jeon, Joon-Ho;Chun, Jung-Il;Park, No-Chul;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.570-575
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly (HSA). It is important factor to allow broader bandwidths for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies in tracking direction. Initial model was designed and the design parameter was defined to the model. The mode frequency variation for the change of design parameter was observed by modal analysis using the finite element method(FEM). The sensitivity matrix was calculated from the observed data and so through sensitivity analysis, an optimized ODD suspension was designed to have the higher resonant frequency than the initial model.

  • PDF

Coprime factor reduction of plant in $H{\infty}$ mixed sensitivity problem ($H{\infty}$ 혼합감도문제에서 플랜트의 소인수요소줄임)

  • 음태호;오도창;박홍배;김수중
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.20-27
    • /
    • 1996
  • In this paper, we propose a coprime factor model reduction method to get a reduced order controller in $H^{\infty}$ mixed sensitivity problem with frequency weighting functions. for this purpose, the given $H^{\infty}$ mixed sensitivity problem is transformed into robust stabilization problem with coprime factor uncertainty of given plant. This method is to define frequency weighted coprime factors of plant in CSD (chain scattering description) form and reduce the coprime factors using weighted balanced truncation. then a controller is designed to the reduced order coprime factors using J-lossless coprime factorization method. Using this approach, the robust stability condition is derived and good performance is preserved in closed loop system with the given plant and the reduced order controller. Also the order of reduced controller for guaranteeing the robust stability can be determined before designing the reduced controller. The proposed method behaves well in both stable and unstable plant.

  • PDF

A Study on the Sensitivity of Dynamic Behavior of Jacket Type Offshore Structure (자켓형 해양 구조물의 동적거동에 대한 민감도 연구)

  • Lee, Jung-Tak;Lee, Kang-Su;Shin, Sang-Hak;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.110-118
    • /
    • 2008
  • This thesis introduces a study conducted by ANSYS, Finite Element Analysis program, on dynamic behavior by thickness of a chord and a brace of a jacket typed marine structure. As load condition to work on offshore structures is getting much more various, it becomes more important to design the structures and operate them. In addition, stability is also required. As the result of this study, it was proved that wind and wave load gives more affection on frequency than on added mass in the Modal Analysis. Also, the chord and brace affect stiffness more than diagonal brace according to sensitivity analysis.

  • PDF

Prediction of Dynamic Characteristics of Continuous Systems Due to the Mass Modification (질량변경에 따른 연속계의 동특성변화 예측)

  • 이정윤;최상렬;박천권;오재응;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.248-256
    • /
    • 1993
  • This paper deriver the generalized mass to find dynamic characteristics and its derivatives of a continous system. And a new sensitivity analysis method is presented by using the amount of change of generalized mass and vibrational mode caused by the variation of lumped and distributed mass. In this paper, to get or detect appropriate results, cantilever beam and stepped beam are used. Deviations of sensitivity coefficient, natual frequency, vibrational mode and transfer function are calculated as result, and compared with the theoretical exact values.

Prediction of Dynamic Characteristics of Continuous Structures due to the Modification of Stiffness (강성 변경에 따른 연속체 구조물의 동특성 변화 예측)

  • Lee, Jung-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.82-88
    • /
    • 1997
  • This paper derives the generalized stiffness to find dynamic characteristics and its derivatives of a continuous system. And a new sensitivity analysis method is presented by using the amount of change of generalized stiffness and vibrational mode caused by the variation of stiffness. In this paper, to get or detect appropriate results, cantilever beam and stepped beam and stepped beam are used. Deviations of sensitivity coefficient, natural frequency, and vibrational mode are calculated as result, and compared with the theoretical exact values.

  • PDF

Frequency Sensitivity Analysis of Nonsinusoidal Input Voltage in Steady State (정상상태에서의 비정현적 입력전압의 주파수 민감도 해석)

  • Choi, Myung-Jun;Lee, Se-Hee;Kim, Chang-Hyun;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.124-126
    • /
    • 1997
  • A number of electromagnetic devices periodically driven by solid-state switches have been analyzed with time-stepping finite element method, which requires much time to reach a steady state. The sensitivity analysis which have been used for the shape design is employed for an efficient calculation of linear magnetodynamics with nonsinusoidal driving sources. The high-order frequency sensitivity from the harmonic finite element formulation is used along with Fourier transform and Taylor series expansion. The algorithm is validated through a numerical example of a single-phase transformer driven by a trapezoidal voltage source.

  • PDF

Optimal Shape Design of Magnetic Actuators for Magnetic and Dynamic Characteristic Improvement

  • Yoo, Jeong-Hoon;Jung, Jae-Yeob;Hong, Hyeok-Soo
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.268-270
    • /
    • 2011
  • This study introduces a new topology optimization scheme combing the genetic algorithm (GA) with the on/off sensitivity method for the magnetic actuator core and the armature design. The design process intended to maximize the first eigen-frequency of the armature part and the magnetic actuating force acting on the armature simultaneously. GA based optimal design was carried out to obtain the initial structure and the modified on/off sensitivity method was succeeded to accelerate the design process. Final results show tens of percent improvement in actuating force as well as the first eigen-frequency of the armature.

Salt Intake Behavior and Blood Pressure: the effect of taste sensitivity and preference (소금 섭취 행태와 혈압: 맛에 대한 민감도와 선호도의 영향)

  • Kim, Jin-Hee;Choi, Man-Kyu
    • Korean Journal of Human Ecology
    • /
    • v.16 no.4
    • /
    • pp.837-848
    • /
    • 2007
  • The literature suggested that a small reduction in overall blood pressure can have a large effect on overall prevalence of hypertension, and therefore, the affect of taste preferences of the population on salt intake should be considered for long-term blood pressure intervention programs. The purpose of this study is to investigate the influence of salt taste preference and salt taste sensitivity on salt intake behavior as risk factors for high blood pressure. We collected information on blood pressure, diet and lifestyle behaviors, salt taste preference and salt taste sensitivity from 540 respondents from Suseo-dong, Seoul. Salt taste sensitivity was assessed by administering a 1% NaCl solution to the subject's tongue and measuring the perceived intensity on 10 level scale. Salt intake behavior was classified into 3 categories: frequency of high-sodium foods, practice of salt-reducing behavior and frequency of vegetable and fruit intake. Salt taste preference showed a significant relation to the subjects' blood pressure, i.e. subjects with a higher salt preference had higher blood pressure. Salt taste sensitivity did not show a significant relation to blood pressure. However, there was a positive correlation between salt taste preference and salt taste sensitivity. Among the 3 indicators used to measure salt intake behavior, the practice of salt-reducing behavior remained significantly correlated to blood pressure. Moreover, salt-reducing behavior and salt taste preference showed a significant correlation, i.e. people who do not like salty foods tend to practice more salt-reducing behavior, leading to reduced levels in blood pressure. In a population, a small reduction in overall blood pressure can have large effects in overall prevalence of hypertension, in contrast to clinical studies where achievement of an individual's normal blood pressure is emphasized. Therefore, taste preference of the population should be considered for long-term blood pressure intervention programs.