Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.2
/
pp.274-279
/
2009
H.264 suggests applying a 2-D 6-tap wiener filter to realize the interpolation for half-pixel positions, followed by a bilinear interpolation to get the data of quarter-pixels precision. This method is comparatively simpler; however, it only considers the affection of 4-connection neighborhood ignoring the influence that comes from the changing rate between respective neighborhoods. As a result, it has the characteristics of a Low-pass filter under the risk of losing high-frequency weights. The Cubic interpolation uses the gray-values within the larger regions of points to be sampled for interpolation. Nevertheless, the cubic interpolation is more complicated and computational. We give a deep analysis on the features while applying both bilinear and cubic interpolation in H.264 presenting a proper selection of interpolation algorithm with respect to specific distribution of gray-value in a certain grand block. The experiments point out that load far motion searching and interpolation are reduced when promoting the precision of interpolation simultaneously.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.6
/
pp.1409-1415
/
2010
In this paper we proposed the watermarking technique using the markspace which is selected by tree-structure between the subbands in the wavelet domain and feature information in the spatial domain. The watermarking candidate region in the wavelet domain is obtained by the markspace selection algorithm divides the highest frequency subband to several segments and calculates theirs energy and the averages value of the total energy of the subband. Also the markspace of the spatial domain is obtained by the boundary information of a image. The final markspace is selected by the markspaces of the wavelet and spatial domain. The watermark is embedded into the selected markspace using the random addresses by LFSR. Finally the watermarking image is generated using the inverse wavelet transform. The proposed watermarking algorithm shows the robustness against the attacks such as JPEG, blurring, sharpening, and gaussian noise.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.16
no.2
/
pp.104-112
/
2002
In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Thyristor Controlled Series Capacitor(TCSC) using Geletic Algorithm(GA). A TCSC meddle consists of a stories capacitor and a parallel path with a thyristor valve and a series inductor. Also in in parallel, as is typical with series capacitor applications, is a metal-oxide varistor(MOV) for overvoltage protection. The proposed PSS parameters are optimized using GA in order to maintain optimal operation of TCSC which is expected to be applied in transmission system to achieve a number of benefits under the various operating conditions. In order to verify the robustness of the proposed method, we considered the dynamic response of angular velocity deviation and terminal voltage deviation under a power fluctuation and rotor angle variation.
In this study, a weighted fuzzy min-max (WFMM) neural network model for pattern classification is proposed. The model has a modified structure of FMM neural network in which the weight concept is added to represent the frequency factor of feature values in a learning data set. First we present in this paper a new activation function of the network which is defined as a hyperbox membership function. Then we introduce a new learning algorithm for the model that consists of three kinds of processes: hyperbox creation/expansion, hyperbox overlap test, and hyperbox contraction. A weight adaptation rule considering the frequency factors is defined for the learning process. Finally we describe a feature analysis technique using the proposed model. Four kinds of relevance factors among feature values, feature types, hyperboxes and patterns classes are proposed to analyze relative importance of each feature in a given problem. Two types of practical applications, Fisher's Iris data and Cleveland medical data, have been used for the experiments. Through the experimental results, the effectiveness of the proposed method is discussed.
To detect thunderstorms occurring in Korea, National Meteorological Satellite Center (NMSC) also introduced the rapid-development thunderstorm (RDT) algorithm developed by EUMETSAT. At NMCS, the H-RDT (HR) based on the Himawari-8 satellite and the K-RDT (KR) which combines the GK2A convection initiation output with the RDT were developed. In this study, we optimized the KR (KU) to improve the detection level of thunderstorms occurring in Korea. For this, we used all available data, such as GK2A/AMI, RADAR, lightning, and numerical model data from the recent two years (2019-2020). The machine learning of logistic regression and stepwise variable selection was used to optimize the KU algorithms. For considering the developing stages and duration time of thunderstorms, and data availability of GK2A/AMI, a total of 72 types of detection algorithms were developed. The level of detection of the KR, HR, and KU was evaluated qualitatively and quantitatively using lightning and RADAR data. Visual inspection using the lightning and RADAR data showed that all three algorithms detect thunderstorms that occurred in Korea well. However, the level of detection differs according to the lightning frequency and day/night, and the higher the frequency of lightning, the higher the detection level is. And the level of detection is generally higher at night than day. The quantitative verification of KU using lightning (RADAR) data showed that POD and FAR are 0.70 (0.34) and 0.57 (0.04), respectively. The verification results showed that the detection level of KU is slightly better than that of KR and HR.
Yildirim, Mustafa Eren;Kaya, Murat;FurkanInce, Ibrahim
Journal of Internet Computing and Services
/
v.23
no.1
/
pp.11-17
/
2022
Data mining is the task of accessing useful information from a large capacity of data. It can also be referred to as searching for correlations that can provide clues about the future in large data warehouses by using computer algorithms. It has been used in the tourism field for marketing, analysis, and business improvement purposes. This study aims to analyze the tourist profile in Turkey through data mining methods. The reason relies behind the selection of Turkey is the fact that Turkey welcomes millions of tourist every year which can be a role model for other touristic countries. In this study, an anonymous and large-scale data set was used under the law on the protection of personal data. The dataset was taken from a leading tourism company that is still active in Turkey. By using the k-means clustering algorithm on this data, key parameters of profiles were obtained and people were clustered into groups according to their characteristics. According to the outcomes, distinguishing characteristics are gathered under three main titles. These are the age of the tourists, the frequency of their vacations and the period between the reservation and the vacation itself. The results obtained show that the frequency of tourist vacations, the time between bookings and vacations, and age are the most important and characteristic parameters for a tourist's profile. Finally, planning future investments, events and campaign packages can make tourism companies more competitive and improve quality of service. For both businesses and tourists, it is advantageous to prepare individual events and offers for the three major groups of tourists.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.11
/
pp.206-216
/
2013
The emotion plays a critical role in human's daily life including learning, action, decision and communication. In this paper, emotion discrimination classifier is designed to reduce system complexity through reduced selection of dominant features from biosignals. The photoplethysmography(PPG), skin temperature, skin conductance, fontal and parietal electroencephalography(EEG) signals were measured during 4 types of movie watching associated with the induction of neutral, sad, fear joy emotions. The genetic algorithm with support vector machine(SVM) based fitness function was designed to determine dominant features among 24 parameters extracted from measured biosignals. It shows maximum classification accuracy of 96.4%, which is 17% higher than that of SVM alone. The minimum error features selected are the mean and NN50 of heart rate variability from PPG signal, the mean of PPG induced pulse transit time, the mean of skin resistance, and ${\delta}$ and ${\beta}$ frequency band powers of parietal EEG. The combination of parietal EEG, PPG, and skin resistance is recommendable in high accuracy instrumentation, while the combinational use of PPG and skin conductance(79% accuracy) is affordable in simplified instrumentation.
The Journal of Korean Institute of Communications and Information Sciences
/
v.28
no.6C
/
pp.648-658
/
2003
As the usage of image/video contents increase, a security problem for the payed image data or the ones requiring confidentiality is raised. This paper proposed an image encryption methodology to hide the image information. The target data of it is the result from quantization in wavelet domain. This method encrypts only part of the image data rather than the whole data of the original image, in which three types of data selection methodologies were involved. First, by using the fact that the wavelet transform decomposes the original image into frequency sub-bands, only some of the frequency sub-bands were included in encryption to make the resulting image unrecognizable. In the data to represent each pixel, only MSBs were taken for encryption. Finally, pixels to be encrypted in a specific sub-band were selected randomly by using LFSR(Linear Feedback Shift Register). Part of the key for encryption was used for the seed value of LFSR and in selecting the parallel output bits of the LFSR for random selection so that the strength of encryption algorithm increased. The experiments have been performed with the proposed methods implemented in software for about 500 images, from which the result showed that only about 1/1000 amount of data to the original image can obtain the encryption effect not to recognize the original image. Consequently, we are sure that the proposed are efficient image encryption methods to acquire the high encryption effect with small amount of encryption. Also, in this paper, several encryption scheme according to the selection of the sub-bands and the number of bits from LFSR outputs for pixel selection have been proposed, and it has been shown that there exits a relation of trade-off between the execution time and the effect of the encryption. It means that the proposed methods can be selectively used according to the application areas. Also, because the proposed methods are performed in the application layer, they are expected to be a good solution for the end-to-end security problem, which is appearing as one of the important problems in the networks with both wired and wireless sections.
In this paper, we propose accurate classification method of an EEG signals during a mental tasks. In the experimental task, subjects achieved through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and select a key. To recognize the subjects' selection time, we analyzed with 4 types feature from the filtered brain waves at frequency bands of $\alpha$, $\beta$, $\theta$, $\gamma$ waves. From the analysed features, we construct specific rules for each subject meta rules including common factors in all subjects. In this system, the architecture of the neural network is a three layered feedforward networks with one hidden layer which implements the error back propagation learning algorithm. Applying the algorithms to 4 subjects show 87% classification success rates. In this paper, the proposed detection method can be a basic technology for brain-computer-interface by combining with discrimination methods.
Journal of Satellite, Information and Communications
/
v.6
no.2
/
pp.72-77
/
2011
Spectrum sensing is a critical functionality of CR network; it allow secondary user to detect spectral holes and to opportunistically use under-utilized frequency bands without causing harmful interference to primary use. Recently, wideband service has been increase for processing abundance of data traffic. So CR network needs a realizable implementation design of spectrum sensing for wideband. To get high resolution performance of wideband sensing must precede algorithm processing for reliability signal detection. By the way, the performance of spectrum sensing can be degraded due to fading and shadowing. In order to overcome this problem, we propose system model of wideband sensing scheme on energy detected collaborative technique. we divide wideband into narrowbands and use narrowbands to detect signal excepting some narrowbands including bad channel through the CSI. And we simulate and analyze in terms of detection probability with various SNR.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.