• Title/Summary/Keyword: Frequency Selection Algorithm

Search Result 144, Processing Time 0.028 seconds

Resource Allocation Information Sorting Algorithm Variable Selection Scheme for MF-TDMA DAMA Satellite Communication System (MF-TDMA DAMA 위성통신 시스템에서의 자원할당정보 정렬 알고리즘 가변 선택기법 연구)

  • Park, Nam Hyoung;Han, Joo-Hee;Han, Ki Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2020
  • In modern society, as technology has advanced and human life area has expanded, there has been an increasing demand for high-quality voice and video communications services without restrictions on time and place. In response to this demand, satellite communications systems that provide a wide range of communications and that offer multiple access are evolving day by day. In satellite communications systems such as Digital Video Broadcasting - Return Channel Via Satellite (DVB-RCS) and Warfighter Information Network-Tactical (WIN-T), the multi-frequency time division multiple access (MF-TDMA) demand assigned multiple access (DAMA) scheme is used for efficient resource allocation. In this scheme, since the satellite terminals periodically request resources from the network controller, and the network controller dynamically allocates resources, it is necessary to arrange resource allocation information from time to time. Shortening of the alignment time is a more important factor in a satellite communications system in which a long transmission delay occurs due to long-distance transmission and reception. In this paper, we propose a sorting algorithm variable-selection scheme that shortens the sorting time by cross-selecting the sorting algorithm based on a threshold value, while setting the number of frames in the MF-TDMA DAMA satellite communications system as the threshold value.

Power-aware Dynamic Path Selection Scheme in AOMDV(Ad hoc On-demand Distance Vector) (AOMDV(Ad hoc On-demand Multipath Distance Vector)에서의 전력을 고려한 동적 경로 선택 기법)

  • Lee, Jang-Su;Kim, Sung-Chun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.42-50
    • /
    • 2008
  • Unlike a cellular network, a mobile ad hoc network(MANET) is constructed only by mobile nodes without access point. Mobile nodes in MANET operate with scarce resources and restricted battery. If battery of intermediate node is exhausted, overall network might be diverged. Therefore, power-aware is really important. An on-demand multipath routing protocol which is proposed to compensate for shortcoming of on-demand single path routing protocol can reduce mute discovery overhead because route discovery starts only when all routes are disconnected. AOMDV(Ad hoc On-demand Multipath Distance Vector) which is on-demand multipath routing protocol based on AODV, reduces 40% of route discovery frequency. However, AOMDV have none of power-aware. So AOMDV have problem that route discovery for power exhaustion is not reduced at all. This paper proposes new power-aware path selection algorithm for AOMDV and scheme that broadcast REER packets when mobile node's battery can be gone. Performance comparison of proposed algorithm with AOMDV using ns-2 simulator shows that route discovery of proposed algorithm is reduced maximally 36.57% than AOMDV's.

Nonbinary Convolutional Codes and Modified M-FSK Detectors for Power-Line Communications Channel

  • Ouahada, Khmaies
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.270-279
    • /
    • 2014
  • The Viterbi decoding algorithm, which provides maximum - likelihood decoding, is currently considered the most widely used technique for the decoding of codes having a state description, including the class of linear error-correcting convolutional codes. Two classes of nonbinary convolutional codes are presented. Distance preserving mapping convolutional codes and M-ary convolutional codes are designed, respectively, from the distance-preserving mappings technique and the implementation of the conventional convolutional codes in Galois fields of order higher than two. We also investigated the performance of these codes when combined with a multiple frequency-shift keying (M-FSK) modulation scheme to correct narrowband interference (NBI) in power-line communications channel. Themodification of certain detectors of the M-FSK demodulator to refine the selection and the detection at the decoder is also presented. M-FSK detectors used in our simulations are discussed, and their chosen values are justified. Interesting and promising obtained results have shown a very strong link between the designed codes and the selected detector for M-FSK modulation. An important improvement in gain for certain values of the modified detectors was also observed. The paper also shows that the newly designed codes outperform the conventional convolutional codes in a NBI environment.

Stable modal identification for civil structures based on a stochastic subspace algorithm with appropriate selection of time lag parameter

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.331-350
    • /
    • 2017
  • Based on the alternative stabilization diagram by varying the time lag parameter in the stochastic subspace identification analysis, this study aims to investigate the measurements from several cases of civil structures for extending the applicability of a recently noticed criterion to ensure stable identification results. Such a criterion demands the time lag parameter to be no less than a critical threshold determined by the ratio of the sampling rate to the fundamental system frequency and is firstly validated for its applications with single measurements from stay cables, bridge decks, and buildings. As for multiple measurements, it is found that the predicted threshold works well for the cases of stay cables and buildings, but makes an evident overestimation for the case of bridge decks. This discrepancy is further explained by the fact that the deck vibrations are induced by multiple excitations independently coming from the passing traffic. The cable vibration signals covering the sensor locations close to both the deck and pylon ends of a cable-stayed bridge provide convincing evidences to testify this important discovery.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.

Channel Estimation Using Virtual Pilot Signal for MIMO-OFDM Systems (MIMO-OFDM 시스템을 위한 가상 기준 신호를 이용한 채널 추정 기법)

  • Seo, Heejin;Park, Sunho;Kim, Jinhong;Shim, Byonghyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • In this paper, we proposed a soft decision-directed channel estimation based on MMSE estimation for MIMO-OFDM system. While the conventional method employs only pilot signals for channel estimation, the proposed algorithm performs channel estimation using pilot and reliable data signals. We also proposed selection criterion among reliable data signal for channel estimation. From numerical simulations, we show that the proposed channel estimator achieves 1 dB performance gain over conventional channel estimators.

A Design of Parameter Self Tuning Fuzzy Controller to Improve Power System Stabilization with SVC System (SVC계통의 안정도 향상을 위한 파라미터 자기조정 퍼지제어기의 설계)

  • Joo, Sok-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2009
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Static VAR Compensator(SVC) using a self tuning fuzzy controller for a synchronous generator excitation and SVC system. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method.

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.

Peer to Peer Search Algorithm based on Advanced Multidirectional Processing (개선된 다방향 프로세싱 기반 P2P 검색 알고리즘)

  • Kim, Boon-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.133-139
    • /
    • 2009
  • A P2P technology in distributed computing fields is presented various methods to share resources between network connected peers. This is very efficient that a degree of resources to good use as compared with peers by using centralized network by a few servers. However peers to compose P2P system is not always online status, therefore it is difficult to support high reliability to user. In our previous work of this paper, it is contributing to reduce the loading rates to select of new resource support peer but a selection method the peers to share works to download resources is very simple that it is just selected about peer to have lowest job. In this paper, we reduced frequency offline peers by estimate based on a average value of success rates for peers.

Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge (사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발)

  • Kim, Ki-Jung;Park, Yoo-Sin;Park, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.414-419
    • /
    • 2020
  • An artificial intelligence-based cable tension estimation model was developed to expand the utilization of data obtained from cable accelerometers of cable-stayed bridges. The model was based on an algorithm for selecting the natural frequency in the tension estimation process based on the vibration method and an applied artificial neural network (ANN). The training data of the ANN was composed after converting the cable acceleration data into the frequency, and machine learning was carried out using the characteristics with a pattern on the natural frequency. When developing the training data, the frequencies with various amplitudes can be used to represent the frequencies of multiple shapes to improve the selection performance for natural frequencies. The performance of the model was estimated by comparing it with the control criteria of the tension estimated by an expert. As a result of the verification using 139 frequencies obtained from the cable accelerometer as the input, the natural frequency was determined to be similar to the real criteria and the estimated tension of the cable by the natural frequency was 96.4% of the criteria.