• Title/Summary/Keyword: Frequency Ratio Model

Search Result 794, Processing Time 0.03 seconds

Performance Analysis of Multi-Carrier CDMA Trellis Coded 16 QAM System with Near/Far Effect in Frequency Selective Multipath Fading Channel (주파수 선택성 다중경로 페이딩 채널에서 Near/Far 영향을 받는 Multi-Carrier CDMA Trellis Coded 16 QAM 시스템의 성능해석)

  • 노재성;강희조;김춘길;김언곤;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.352-361
    • /
    • 2000
  • The performance of a multi-carrier CDMA system is analyzed considering frequency selective multipath fading and Near/Far effects. The number of multicarrier, multiuser, and arms of RAKE receiver, and the decay ratio of frequency selective multipath fading are used as a parameter for the performance analysis. More over, the distribution and the strength of multiuser interference are also considered. To evaluate the Near/Far effects in a multi-carrier CDMA system, three distribution models are assumed. In the first model, interference to carrier Ratio, I/C, ranges from -4 dB to 4dB, and at each 2 dB interval, 20 % of multiuser is assumed to be uniformly distributed. In the second one, I/C ranges from -2 dB to 2 dB, and 33.3% of multiuser is assumed to be equally dispersed at each 2dB interval. The third model is 0 dB of I/C, that is, with perfect power control, multiuser are assumed to be evenly located. In this paper, multi-carrier CDMA system adoption RAKE receiver is proposed to mitigate the frequency selective multipath fading. From the results, the third model(i.e. perfect power control) shows the best performance, and the narrower range of I/C causes the less effects to the desired signal, which reads to the better performance.

  • PDF

A Study on the Action Potential Generations of the Vestibular Hair Cell Model with Negative Stiffness Feature (반강성 특성이 반영된 전정 유모세포 모델의 활동전위 생성에 관한 연구)

  • Kim, Dongyoung;Hong, Kihwan;Kim, Kyu-Sung;Lee, Sangmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.190-199
    • /
    • 2014
  • In this paper, the vestibular hair bundle feature model and integrated vestibular hair cell model were proposed. In conventional modeling studies of vestibular system, only partial mechanisms were modeled, such as the characteristics of the vestibular hair bundles without external forces or the action potential of synapse, and the study about action potential of vestibular afferent considering the characteristics of the vestibular hair bundle was not performed. The proposed integrated vestibular hair cell model reflects external forces considering negative stiffness features of each hair bundles with different regularities of hair cells and our model was compared with conventional model without external forces. As a result, irregular afferent and intermediate afferent with high ratio of firing frequency variations to the changes of external stimulation had small width of negative stiffness section, but the width of the negative stiffness of regular afferent with low ratio was similar to that of conventional negative stiffness features. And the proposed integrated vestibular hair cell model showed almost same results with conventional data with animal experiments in 11 chosen frequency bands. It is verified that our proposed hair bundle feature model is adequately modeled.

Using DQ method for vibration analysis of a laminated trapezoidal structure with functionally graded faces and damaged core

  • Vanessa Valverde;Patrik Viktor;Sherzod Abdullaev;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.73-91
    • /
    • 2024
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with a damaged core and FG wavy CNT-reinforced face sheets. A damage model is introduced to provide an analytical description of an irreversible rheological process that causes the decay of the mechanical properties, in terms of engineering constants. An isotropic damage is considered for the core of the sandwich structure. The classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for the trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. After demonstrating the convergence and accuracy of the method, different parametric studies for laminated trapezoidal structure including carbon nanotubes waviness (0≤w≤1), CNT aspect ratio (0≤AR≤4000), face sheet to core thickness ratio (0.1 ≤ ${\frac{h_f}{h_c}}$ ≤ 0.5), trapezoidal side angles (30° ≤ α, β ≤ 90°) and damaged parameter (0 ≤ D < 1) are carried out. It is explicated that the damaged core and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. Results show that by increasing the values of waviness index (w), normalized natural frequency of the structure decreases, and the straight CNT (w=0) gives the highest frequency. For an overall comprehension on vibration of laminated trapezoidal plates, some selected vibration mode shapes were graphically represented in this study.

MIMO-OFDM BPLC over Statistical Power Line Channels with Cross-Talk (크로스 토크를 갖는 통계적 전력선 채널 하에 MIMO-OFDM 광대역 전력선 통신)

  • Yoo, Jeong-Hwa;Choe, Sang-Ho;Pine, Nazcar
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1565-1573
    • /
    • 2011
  • In this paper, we present a MIMO-OFDM broadband power line communication (BPLC) for Smart Grid and its associated applications and analyze its performance over the 3-phase 4-wire power line channels. For practical BPLC system simulation, we adopt the statistical power line fading channel model instead of the existing deterministic fading channel models (Zimmermann model, MTL model, and so on). In this paper, we implement $2{\times}2$ and $3{\times}3$ MIMO schemes using 3-phase 4-wire power lines. We investigate the capacity loss and BER performance of the proposed MIMO system by considering the effect of cross-talk between antenna paths. We choose space-frequency coding in order to reduce frequency interference between subcarriers and employ maximum ratio combining (MRC) that achieves both multiple antenna path diversity gain and multiple fading path diversity gain. We evaluate the proposed system performance through computer simulation in terms of the impulse noise index and the capacity loss ratio and compare the different signal combining schemes including MRC, equal gain combing (EGC), and selection combining (SC).

Numerical analysis of unsteady hydrodynamic performance of pump-jet propulsor in oblique flow

  • Qiu, Chengcheng;Pan, Guang;Huang, Qiaogao;Shi, Yao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.102-115
    • /
    • 2020
  • In this study, the SST k - ω turbulence model and the sliding mesh technology based on RANS method have been adopted to simulate the exciting force and hydrodynamic of a pump-jet propulsor in different oblique inflow angle (0°, 10°, 20°, 30°) and different advance ratio (J = 0.95, J = 1.18, J = 1.58).The fully structured grid and full channel model have been adopted to improved computational accuracy. The classical skewed marine propeller E779A with different advance ratio was carried out to verify the accuracy of the numerical simulation method. The grid independence was verified. The time-domain data of pump-jet propulsor exciting force including bearing force and fluctuating pressure in different working conditions was monitored, and then which was converted to frequency domain data by fast Fourier transform (FFT). The variation laws of bearing force and fluctuating pressure in different advance ratio and different oblique flow angle has been presented. The influence of the peak of pulsation pressure in different oblique flow angle and different advance ratio has been presented. The results show that the exciting force increases with the increase of the advance ratio, the closer which is to the rotor domain and the closer to the blades tip, the greater the variation of the pulsating pressure. At the same time, the exciting force decrease with the oblique flow angle increases. And the vertical and transverse forces will change more obviously, which is the main cause of the exciting force. In addition, the pressure distribution and the velocity distribution of rotor blades tip in different oblique flow angles has been investigated.

Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang;Ou, Xiang;Chen, Chen-Jie
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.295-306
    • /
    • 2019
  • Shanghai Tower is a 632-meter super high-rise building located in an area with wind and active earthquake. A sophisticated structural health monitoring (SHM) system consisting of more than 400 sensors has been built to carry out a long-term monitoring for its operational safety. In this paper, a reduced-order model including 31 elements was generated from a full model of this super tall building. An iterative regularized matrix method was proposed to tune the system parameters, making the dynamic characteristic of the reduced-order model be consistent with those in the full model. The updating reduced-order model can be regarded as a benchmark model for further analysis. A long-term monitoring for structural dynamic characteristics of Shanghai Tower under different construction stages was also investigated. The identified results, including natural frequency and damping ratio, were discussed. Based on the data collected from the SHM system, the dynamic characteristics of the whole structure was investigated. Compared with the result of the finite element model, a good agreement can be observed. The result provides a valuable reference for examining the evolution of future dynamic characteristics of this super tall building.

Simple Statistical Tools to Detect Signals of Recent Polygenic Selection

  • Piffer, Davide
    • Interdisciplinary Bio Central
    • /
    • v.6 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2014
  • A growing body of evidence shows that most psychological traits are polygenic, that is they involve the action of many genes with small effects. However, the study of selection has disproportionately been on one or a few genes and their associated sweep signals (rapid and large changes in frequency). If our goal is to study the evolution of psychological variables, such as intelligence, we need a model that explains the evolution of phenotypes governed by many common genetic variants. This study illustrates simple statistical tools to detect signals of recent polygenic selection: a) ANOVA can be used to reveal significant deviation from random distribution of allele frequencies across racial groups. b) Principal component analysis can be used as a tool for finding a factor that represents the strength of recent selection on a phenotype and the underlying genetic variation. c) Method of correlated vectors: the correlation between genetic frequencies and the average phenotypes of different populations is computed; then, the resulting correlation coefficients are correlated with the corresponding alleles' genome-wide significance. This provides a measure of how selection acted on genes with higher signal to noise ratio. Another related test is that alleles with large frequency differences between populations should have a higher genome-wide significance value than alleles with small frequency differences. This paper fruitfully employs these tools and shows that common genetic variants exhibit subtle frequency shifts and that these shifts predict phenotypic differences across populations.

Higher-mode effects for soil-structure systems under different components of near-fault ground motions

  • Khoshnoudian, Faramarz;Ahmadi, Ehsan;Sohrabi, Sina;Kiani, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.83-99
    • /
    • 2014
  • This study is devoted to estimate higher-mode effects for multi-story structures with considering soil-structure interaction subjected to decomposed parts of near-fault ground motions. The soil beneath the super-structure is simulated based on the Cone model concept. Two-dimensional structural models of 5, 15, and 25-story shear buildings are idealized by using nonlinear stick models. The ratio of base shears for the soil-MDOF structure system to those obtained from the equivalent soil-SDOF structure system is selected as an estimator to quantify the higher-mode effects. The results demonstrate that the trend of higher-mode effects is regular for pulse component and has a descending variation with respect to the pulse period, whereas an erratic pattern is obtained for high-frequency component. Moreover, the effect of pulse component on higher modes is more significant than high-frequency part for very short-period pulses and as the pulse period increases this phenomenon becomes vice-versa. SSI mechanism increases the higher-mode effects for both pulse and high-frequency components and slenderizing the super-structure amplifies such effects. Furthermore, for low story ductility ranges, increasing nonlinearity level leads to intensify the higher-mode effects; however, for high story ductility, such effects mitigates.

Application of antenna array to FBMC/OQAM system in frequency-selective signal environment (주파수 선택적 신호 환경에서 안테나 어레이의 FBMC/OQAM 시스템 적용)

  • Kim, Yekaterina;Ahn, Heungseop;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • Despite attractive advantages such as good time-frequency localization and improved spectral efficiency, filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) suffers from multipath fading. In highly frequency-selective channels, the effect of multipath interference can significantly distort the FBMC/OQAM signal due to the absence of cyclic prefix. To resolve the problem of the multipath interference in FBMC/OQAM, this paper proposes applying an antenna array that provides well shaped beam pattern for each multipath. To evaluate the performance of the proposed array system, various computer simulations have been conducted. The accuracy of direction of arrival estimation is demonstrated through spatial spectrum for a different number of antennas in a sub-array. The performance improvement is presented in terms of bit error rate. We found that the proposed array system mitigate the multipath interferences in Extended Typical Urban model with 12 antennas in a sub-array. Moreover, as the number of antennas in a sub-array increases, the system provides a signal-to-noise ratio gain.

Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed (둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석)

  • Lee, Hyuk;Kim, Jong-Do;Yoon, Moon-chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.