• 제목/요약/키워드: Frequency Keyword Analysis

검색결과 316건 처리시간 0.028초

텍스트 마이닝을 활용한 Youtube 광고에 대한 소비자 인식 분석 (A Study on Analysis of consumer perception of YouTube advertising using text mining)

  • 엄성원
    • 경영과정보연구
    • /
    • 제39권2호
    • /
    • pp.181-193
    • /
    • 2020
  • 본 연구는 최근에 이슈가 되고 있는 텍스트마이닝을 활용하여 소비자 인식을 분석한 연구이다. 이를 위해 삼성갤럭시 Youtube 광고에 대한 소비자 리뷰 분석을 통해 소비자들이 가지고 있는 삼성 갤럭시에 대한 인식을 분석하였다. 분석을 위해 Youtube 광고의 소비자 리뷰 1,819개를 추출하였다. 이를 데이터 전처리 과정을 거쳐 광고와 관련된 키워드를 명사, 형용사, 부사로 분류하여 추출하였다. 이후 빈도 분석 및 감성 분석을 실시하였으며 마지막으로 구조적 등위성 분석을 통한 군집화를 실시하였다. 본 연구 결과를 간략히 요약하면 다음과 같다. 첫 번째 가장 많이 언급된 단어는 갤럭시 노트(n=217), 좋음(n=135), 펜(n=40), 기능(n=29) 등으로 나타났다. 이는 소비자들이 광고를 통해 "갤럭시 노트", "좋음", "펜", "기능"은 삼성 핸드폰 제품에 대해 기능적인 면이 좋고, 노트 펜에 대해서 긍정적으로 높게 인식한다고 판단할 수 있다. 추가적으로 "삼성페이", "혁신", "디자인", "아이폰" 등에 대한 인식은 삼성 핸드폰에 대해 혁신적인 디자인과 삼성페이의 기능적인 면에서 상당히 좋은 평가를 하는 것을 알 수 있다. 두 번째, Youtube 광고에 대한 감성분석 결과이다. 감성 분석 결과 감성강도 비율이 긍정(75.95%)로 부정(24.05%)보다 높게 나타났다. 이는 소비자들이 삼성 갤럭시 모바일폰에 대해 긍정적으로 인식하고 있음을 의미한다. 감성 키워드 분석 결과 긍정키워드의 경우는 "좋다", "후하다", "혁신적", "최고다", "빠르다", "예쁘다" 등으로 나타났으며, 부정키워드의 경우는 "겁난다", "울고싶다", "불편", "아쉽다", "싫다" 등이 추출되었다. 본 연구이 시사점은 기존 광고에 대한 소비자 인식 연구를 살펴보면 대부분 정량적 분석 방법에 의한 연구가 대부분이었다. 본 연구에서는 광고에 대한 정량적 연구 방법에서 탈피하여 정성적 연구를 통해 소비자 인식분석을 시도하였다. 이는 향후 연구에도 많은 영향을 미칠 것으로 판단되며, 정성적 연구를 통해 소비자 인식 연구의 출발점이 될 것으로 확신한다.

토픽 모델링을 활용한 한국의 창업생태계 트렌드 변화 분석 (Analysis on Dynamics of Korea Startup Ecosystems Based on Topic Modeling)

  • 손희영;이명종;변영조
    • 지식경영연구
    • /
    • 제23권4호
    • /
    • pp.315-338
    • /
    • 2022
  • 1986년, 한국은 국가발전의 주축인 중소기업 창업지원을 위한 법 제도를 마련하였다. 이를 기반으로 지난 30여년간 창업정책의 수립 및 발전을 거듭하여 매년 100만 개가 넘는 신규 창업기업이 설립되는 역동적인 창업생태계를 구축하였다. 국가의 정책 방향과 사회, 경제, 문화 등의 외부환경 영향, 그리고 창업지원의 역사를 주요 이슈별로 분석하여 도출된 핵심문장 또는 키워드는 시대별 지원의 특징과 국가지원의 중심내용 등을 확인하는 데 매우 유용하다. 본 연구는 한국의 창업생태계 트렌드 변화를 분석하기 위해 1991년부터 2020년 12월까지 30년간의 언론기사에서 '창업', '벤처', '스타트업' 키워드가 포함된 118만여 건을 추출하고 네트워크 분석과 토픽 모델링을 활용하였다. 분석결과, 한국의 창업생태계 트렌드는 기업 및 산업육성, 확산 그리고 규제 완화, 활황 등, 정부 중심으로 스타트업 생태계의 변화와 발전이 이루어졌음을 파악할 수 있었으며, 다빈도 키워드 분석결과, 생태계 구성요인 간의 연계 활동을 통하여 기업가적인 생산성이 창출되었다. 생산성 창출의 주요 요인으로 한국은 대기업의 휴대폰 산업 발전과 이와 관련된 콘텐츠 스타트업의 성장, 인터넷과 쇼핑몰 중심의 플랫폼 기업의 발전, 그리고 청년창업과 글로벌 진출, 모바일과 인터넷 인프라 중심의 창업기업육성 노력 등으로 파악할 수 있었다. 본 연구는 30년간의 언론기사를 텍스트마이닝과 토픽 모델링을 활용하여 트렌드를 도출하였다. 이는 선행연구가 기존 정부와 정책의 변경 시기를 기준으로 트렌드 변화를 분석한 것과 달리, 언론기사의 키워드와 토픽 변화를 기준으로 창업생태계의 트렌드 변화를 분석하였다는 점에서 학술적 의의뿐만 아니라, 30년 간의 창업생태계 변화 및 주요이슈를 조명해 봄으로써 향후 창업지원의 방향성을 예측할 수 있는 실무적 시사점을 제공하였다.

연구주제 분석을 통한 한국창작무용 경향 탐색 : 텍스트 마이닝의 적용 (Exploring the Trend of Korean Creative Dance by Analyzing Research Topics : Application of Text Mining)

  • 유지영;김우경
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권6호
    • /
    • pp.53-60
    • /
    • 2020
  • 이 연구는 현상의 흐름과 연구의 경향이 맥락적으로 일치한다는 가정을 바탕에 두고 있다. 이에 텍스트 마이닝을 활용하여 한국창작무용 연구의 주제 분석을 통해 춤의 경향을 탐색하는 것에 목적이 있다. 이에 논문 검색 웹사이트에 구축되어 있는 616편의 논문제목에서 1,291개의 단어를 분석하였다. 데이터의 수집 및 정제, 분석은 모두 R 3.6.0 SW을 사용하였다. 연구결과 첫째, 2000년대 이전에는 시대를 나타내는 키워드가 높은 빈도를 나타내었으나 교육 및 신체훈련 측면에서의 한국창작무용 연구유형도 발견되었다. 둘째, 2000년대 이후에는 무용단의 공연활동과 관련된 키워드의 빈도가 높게 나타났으나 최승희가 여전히 한국창작무용 연구에서 중요한 위치에 있다는 것이 확인되었다. 셋째, 한국창작무용 연구의 전체 연구주제를 분석한 결과 '근대시대 최승희의 예술', '현대 전통의 수용 양상과 가치', '전통춤의 안무적 표현 및 활용', '국립무용단의 공연 활동', '시대별 춤 표현', '교육 프로그램의 적용'으로 총 6개의 토픽이 추출되었다. 이 중 '근대시대 최승희의 예술'에 관한 연구가 가장 높은 비중을 차지하고 있는 것으로 나타났다. 넷째, 2000년을 기준으로 상승하고 있는 Hot 토픽은 '국립무용단의 공연 활동'과 '전통춤의 안무적 표현 및 활용'으로 나타났다. 그러나 최근 국립무용단의 공연 기조가 '전통을 기반으로 한 현대화'를 표방하고 있으므로 2000년대 이후 한국창작무용의 경향이 전통춤을 모티프로 한 안무적 표현과 그 활용에 공통적으로 집중되어 있음이 확인되었다. 다섯째, 2000년을 기준으로 하락하고 있는 Cold 토픽은 '시대별 춤 표현'에 관한 연구로 나타났다. 이것은 한국창작춤의 장르적 정착 이후 다양한 춤 스타일의 혼재에 따른 경향으로 연구에 대한 관심도 역시 저하된 것으로 판단되었다.

산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로 (A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles)

  • 김원희;권영옥
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.287-316
    • /
    • 2023
  • 최근 전 세계적으로 기업의 환경(Environmental)·사회(Social)·지배구조(Governance)의 비재무적 요소를 고려한 지속가능경영이 필수적으로 요구되면서, 각 기업들은 이에 대응할 수 있는 전략적 방향 수립이 중요해지고 있다. 특히 기업이 속한 산업별로 상이한 ESG 이슈에 대한 이해를 바탕으로 산업과 개별 기업의 특성을 반영한 전략을 개발하고 추진할 수 있어야 할 것이다. 이에 본 연구에서는 금융, 제조, IT 분야별로 나누어 주요 국내 기업들의 ESG 보고서와 관련 뉴스 기사를 이용하여 산업별 ESG 동향과 활동을 비교 분석하였다. 키워드 빈도분석과 토픽 모델링을 활용한 분석 결과, 국내 ESG 선도 기업들의 지속가능경영 활동에서의 산업별 차이를 도출 할 수 있다. 금융 분야에서는 '고객 중심 경영'과 '기후 변화 대응', 제조 분야에서는 '지속가능한 공급망 관리'와 '탄소중립', IT 분야에서는 '기술혁신'과 '디지털 책임'이 강조되었다. ESG 요소별 우선 순위가 높은 활동의 예를 들면, 환경 측면에서는 '에너지 절감과 친환경 활동', 사회 측면에서는 '사회공헌과 상생', 지배구조 측면에서는 '이사회 독립성 강화와 리스크 관리' 등으로 나타났다. 더 나아가 산업별 각 ESG 요소의 핵심 이슈 뿐 아니라 ESG 보고서와 뉴스 기사의 내용 유사성 및 차별점도 확인하였다. 연구의 결과는 산업별 동향을 고려한 ESG 경영 전략 및 정책의 방향성을 제시하고 있으며 이는 산업별 ESG 평가체계 수립에도 도움이 될 것으로 기대한다.

텍스트 마이닝을 이용한 공군 부사관 지원자 자기소개서의 차별적 특성 분석 (Analyzing the discriminative characteristic of cover letters using text mining focused on Air Force applicants)

  • 권혁;김우주
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.75-94
    • /
    • 2021
  • 저출산 문제로 인한 병역자원 감소와 병 복무기간 단축에 따른 군 간부 대비 병 복무 선호 현상은 우수한 군 간부확보정책에 대한 추가적인 고찰을 필요로 한다. 이와 관련된 연구들은 대부분 사회과학에서 주로 사용되는 방법론으로 분석하였으나, 본 연구는 대량의 문헌조사에 적합한 텍스트 마이닝의 방법론으로 접근한다. 이를 위해, 본 연구는 공군 부사관 지원자 자기소개서에서 차별적인 특성의 단어들을 추출하고 합격 및 불합격의 극성을 분석한다. 본 연구는 총 3단계로 이루어졌다. 첫번째, 지원분야를 일반분야와 기술분야로 나누고, 자기소개서에서 특성을 가지는 단어들을 분야별 빈도수 비율의 차이대로 순서화 한다. 각 지원분야별 비율의 차이가 클수록 해당 지원분야의 특성을 나타내는 것으로 정의하였다. 두번째, 이 특성을 나타내는 단어들을 LDA를 통해 단어들의 Topic을 군집화하고 이를 바탕으로 Label을 정의하였다. 세번째, 이 군집화 된 지원분야별 단어들을 L-LDA를 통해 합격과 불합격의 극성을 분석하였다. L-LDA값의 차이가 합격에 가까울수록 합격자들이 많이 사용하는 단어로 정의하였다. 본 연구를 통해, 공군 부사관 자기소개서의 차별적 특성을 추출하기에는 LDA보다 L-LDA가 더 적합함을 알 수 있다. 또한, 이러한 방법론은 별도의 서면 또는 대면 설문 방식이 아니라, 대량 문서에 대한 텍스트 마이닝 기법을 적용하여 분석시간을 단축하고, 전체 모집단에 대한 신뢰성을 높일 수 있다. 따라서 본 연구인 공군 부사관 선발결과 분석을 통해, 선발제도 및 홍보제도에 활용 가능한 정보를 제공하고, 군 인력획득 분야 연구에 있어 활용 가능한 방법론을 제안하고자 한다.

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.