• Title/Summary/Keyword: Frequency Keyword Analysis

Search Result 316, Processing Time 0.027 seconds

A Study On the Healthcare Technology Trends through Patent Data Analysis (특허 데이터 분석을 통한 헬스케어 기술 트렌드 연구)

  • Han, Jeong-Hyeon;Hyun, Young-Geun;Chae, U-ri;Lee, Gi-Hyun;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.179-187
    • /
    • 2020
  • In a social environment where population aging is rapidly progressing, the healthcare service market is growing fast with the increasing interest in health and quality of life based on rising income levels and the evolution of technology. In this study, after keywords were extracted from Korean and US patent data published on KIPRIS from 2000 to October 2019, frequency analysis, time series analysis, and keyword network analysis were performed. Through this, the change of technology trends were identified, which keywords related to healthcare was shifted from traditional medical words to ICT words. In addition, although the keywords in Korean patents are 55% similar to those in the US, they show an absolute gap in patent production volume. In the next study, we will analyze various data such as domestic and international research and can obtain meaningful implications in the global market on the identified keywords.

Exploration of Hydrogen Research Trends through Social Network Analysis (연구 논문 네트워크 분석을 이용한 수소 연구 동향)

  • KIM, HYEA-KYEONG;CHOI, ILYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • This study analyzed keyword networks and Author's Affiliation networks of hydrogen-related papers published in Korea Citation Index (KCI) journals from 2016 to 2020. The study investigated co-occurrence patterns of institutions over time to examine collaboration trends of hydrogen scholars. The study also conducted frequency analysis of keyword networks to identify key topics and visualized keyword networks to explore topic trends. The result showed Collaborative research between institutions has not yet been extensively expanded. However, collaboration trends were much more pronounced with local universities. Keyword network analysis exhibited continuing diversification of topics in hydrogen research of Korea. In addition centrality analysis found hydrogen research mostly deals with multi-disciplinary and complex aspects like hydrogen production, transportation, and public policy.

A Comparative Study of a New Approach to Keyword Analysis: Focusing on NBC (키워드 분석에 대한 최신 접근법 비교 연구: 성경 코퍼스를 중심으로)

  • Ha, Myoungho
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.33-39
    • /
    • 2021
  • This paper aims to analyze lexical properties of keyword lists extracted from NLT Old Testament Corpus(NOTC), NLT New Testament Corpus(NNTC), and The NLT Bible Corpus(NBC) and identify that text dispersion keyness is more effective than corpus frequency keyness. For this purpose, NOTC including around 570,000 running words and NNTC about 200,000 were compiled after downloading the files from NLT website of Bible Hub. Scott's (2020) WordSmith 8.0 was utilized to extract keyword lists through comparing a target corpus and a reference corpus. The result demonstrated that text dispersion keyness showed lexical properties of keyword lists better than corpus frequency keyness and that the former was a superior measure for generating optimal keyword lists to fully meet content-generalizability and content distinctiveness.

A Study on the Demand Forecasting of Healthcare Technology from a Consumer Perspective : Using Social Data and ARIMA Model Approach (소셜데이터 및 ARIMA 분석을 활용한 소비자 관점의 헬스케어 기술수요 예측 연구)

  • Yang, Dong Won;Lee, Zoon Ky
    • Journal of Information Technology Services
    • /
    • v.19 no.4
    • /
    • pp.49-61
    • /
    • 2020
  • Prior studies on technology predictions attempted to predict the emergence and spread of emerging technologies through the analysis of correlations and changes between data using objective data such as patents and research papers. Most of the previous studies predicted future technologies only from the viewpoint of technology development. Therefore, this study intends to conduct technical forecasting from the perspective of the consumer by using keyword search frequency of search portals such as NAVER before and after the introduction of emerging technologies. In this study, we analyzed healthcare technologies into three types : measurement technology, platform technology, and remote service technology. And for the keyword analysis on the healthcare, we converted the classification of technology perspective into the keyword classification of consumer perspective. (Blood pressure and blood sugar, healthcare diagnosis, appointment and prescription, and remote diagnosis and prescription) Naver Trend is used to analyze keyword trends from a consumer perspective. We also used the ARIMA model as a technology prediction model. Analyzing the search frequency (Naver trend) over 44 months, the final ARIMA models that can predict three types of healthcare technology keyword trends were estimated as "ARIMA (1,2,1) (1,0,0)", "ARIMA (0,1,0) (1,0,0)", "ARIMA (1,1,0) (0,0,0)". In addition, it was confirmed that the values predicted by the time series prediction model and the actual values for 44 months were moving in almost similar patterns in all intervals. Therefore, we can confirm that this time series prediction model for healthcare technology is very suitable.

Comparison of Keywords of the Journal of Sasang Constitutional Medicine with MeSH Terms (사상체질의학회지 게재논문의 영문 주제어와 MeSH 용어의 비교 분석)

  • Kim, Yun-Young;Park, Hye-Joo;Lee, Si-Woo;Yoo, Jong-Hyang
    • Journal of Sasang Constitutional Medicine
    • /
    • v.25 no.1
    • /
    • pp.34-42
    • /
    • 2013
  • Objectives The purpose of this study was analyzing the equality between the MeSH terms and the keyword used in the papers published in Journal of Sasang Constitutional Medicine and investigating how to use an appropriate MeSH terms as keyword in the papers. Methods A total of 704 keyword used in 177 papers published from 2009 to 2012 in Journal of Sasang Constitutional Medicine were analyzed to investigate the equality between the keyword and the MeSH terms. The collected data was analyzed using SPSS 17.0 software for frequency analysis. Results Among the 704 keyword, 107 keyword(15.2%) was perfectly matched with the MeSH terms. 64 keyword(9.1%) showed partial difference was with the MeSH terms, and 11 keyword(1.7%) showed partial difference was with the Entry terms. 127 keyword(18.0%) were included in the exception item due to the nature of journal, and 395 keyword(56.1%) were not perfectly matched with the MeSH terms. In the yearly analysis result, the number of papers that keyword and MeSH terms perfectly matched was not significant changed, however the number of papers that keyword and MeSH terms did not matched was continuously increased, which clearly indicate use of MeSH terms as the keyword of the papers published in the journal of Sasang constitution medicine is insufficient. Conclusions The papers published in journal of Sasang constitutional medicine need to be cited in various fields and the paper's finding need to affect in other studies for the development of Korean medicine and Sasang constitutional medicine. The use of proper keyword aligned with the international standards is necessary to accomplish the globalization of them.

Analysis of Research Trends in Information Literacy Education Using Keyword Network Analysis and Topic Modeling (키워드 네트워크 분석과 토픽모델링을 활용한 정보활용교육 연구 동향 분석)

  • Jeong-Hoon, Lim
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.4
    • /
    • pp.23-48
    • /
    • 2022
  • The purpose of this study is to investigate the flow of domestic information literacy education research using keyword network analysis and topic modeling and to explore the direction of information literacy education in the future. For this reason, 306 academic papers related to information literacy education published in academic journals of the library and information science field in Korea were chosen. And through the preprocessing process for abstracts of the paper, total keyword appearance frequency, keyword appearance frequency by period, and keyword simultaneous occurrence frequency were analyzed. Subsequently, keyword network analysis analyzed the degree centrality, between centrality, and eigenvector centrality of keywords. Using structural topic modeling analysis, 15 topics -curriculum, information literacy effect, contents of information literacy education, school library education, information media literacy, information literacy ability evaluation index, library anxiety, public library program, health information literacy ability, digital divide, library assisted instruction improvement, research trend, information literacy model, and teacher role-were derived. In addition, the trend of topics by year was analyzed to confirm the change in relative weight by topic. Based on these results, the direction of information literacy education and the suggestions for follow-up research were presented.

XML Document Keyword Weight Analysis based Paragraph Extraction Model (XML 문서 키워드 가중치 분석 기반 문단 추출 모델)

  • Lee, Jongwon;Kang, Inshik;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2133-2138
    • /
    • 2017
  • The analysis of existing XML documents and other documents was centered on words. It can be implemented using a morpheme analyzer, but it can classify many words in the document and cannot grasp the core contents of the document. In order for a user to efficiently understand a document, a paragraph containing a main word must be extracted and presented to the user. The proposed system retrieves keyword in the normalized XML document. Then, the user extracts the paragraphs containing the keyword inputted for searching and displays them to the user. In addition, the frequency and weight of the keyword used in the search are informed to the user, and the order of the extracted paragraphs and the redundancy elimination function are minimized so that the user can understand the document. The proposed system can minimize the time and effort required to understand the document by allowing the user to understand the document without reading the whole document.

An Analysis of Research Trends on Public Libraries in Korea Using Keyword Network Analysis (키워드 네트워크 분석을 활용한 국내 공공도서관 연구 동향 분석)

  • Rosa Chang
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.4
    • /
    • pp.285-302
    • /
    • 2023
  • Based on this study, the research trends were identified for the field of public libraries in Korea by utilizing the keyword network analysis. For 20 years from 2003 to 2022, a total of 752 papers related to the public libraries published in the four largest academic journals in the field of library and information science in Korea were analyzed. The research results are as follows. First, from 2003 to 2022, an annual average of 37.6 papers were published, demonstrating a pattern of repeated rise and fall. Second, the keywords of 'service' and 'culture' were identified as the most discussed keywords as they were found to be among the top five in terms of the frequency of occurrence, connection centrality, and the mediation centrality analysis results. Third, in terms of the results of analyzing the co-occurrence frequency of keyword pairs, attention was paid to the keyword pairs of education-program, service-user, service-children, and service-disability.

Domestic Research Trend of Internet of Things based on Keyword Frequency and Centrality Analysis (키워드 빈도와 중심성 분석에 기반한 사물인터넷 국내 연구 동향)

  • Lee, Taekkyeun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.23-35
    • /
    • 2020
  • This study aims to examine trends in the IoT field by collecting and analyzing domestic papers on IoT that will have a great impact across industries and society. The survey period for this study was from 2015 to 2019, and the domestic papers on the IoT were collected using Naver's Academic Information. We extracted the keywords with high frequency from the domestic papers collected by the period and performed the centrality analysis to identify the central keywords among the keywords with high frequency. In terms of keyword frequency, 'sensor' and 'security' from 2015 to 2017 appeared as the top keywords with high frequency. From 2017, 'car' and 'intelligence' appeared as the top keywords with high frequency. In terms of keyword centrality, 'security' and 'sensor' from 2015 to 2016 appeared as highly centralized keywords. From 2017, 'intelligence', 'car' and 'industrial revolution' appeared as highly centralized keywords.

Keyword Network Analysis on Global Research Trend in Design (1999~2018) (글로벌 디자인 연구동향에 대한 키워드 네트워크 분석 연구 (1999~2018))

  • Choi, Chool-Heon;Jang, Phill-Sik
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.7-16
    • /
    • 2019
  • The purpose of this study is to identify the characteristics of researches that have been conducted for the last 20 years through analyzing global research trends and evolutions of design articles from 1999 to 2018 with keyword network analysis. For this purpose, we selected 3,569 articles in 22 journals related to design research retrieved from the Scopus database and constructed keyword network model through the author keyword and index keyword. The frequency of the author and index keyword, the centrality of betweenness and degree were analyzed with the keyword network. The results show that design has been applied to various fields for recent 20 years, and the research trends of design could be quantitatively characterized by keyword network analysis. The result of this study could be used to suggest future research topics in the field of design based on quantitative and empirical data.