• 제목/요약/키워드: Frequency Generation

검색결과 2,073건 처리시간 0.031초

초음속 제트의 스크리치 톤 주파수 특성에 관한 수치적 연구 (NUMERICAL STUDY ON THE FREQUENCY CHARACTERISTICS OF SCREECH TONE IN A SUPERSONIC JET)

  • 김용석;유기완;황창전;이덕주
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.53-59
    • /
    • 2007
  • An axisymmetric supersonic screeching jet is numerically simulated to examine the length scales of screech frequency as well as screech tone generation mechanism. The axisymmetric Reynolds-averaged Navier-Stokes equations in conjuction with a modified Spalart-Allmaras turbulence model are employed. It is demonstrated that the axisymmetric jet screech tones can be simulated correctly and the numerical results are in good agreement with the experimental data. Instability waves, shock-cell structures and the phenomena of shock motion are investigated in detail to identify the screech tone generation mechanism. Shock spacings and standing wave length are analyzed to determine the dominent length scale crucial to the screech frequency formulation.

전력시스템의 부하주파수 제어를 위한 IA-Fuzzy 전 보상 PID 제어기 설계 (Design of a IA-Fuzzy Precompensated PID Controller for Load Frequency Control of Power Systems)

  • 정형환;이정필;정문규;김창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권4호
    • /
    • pp.415-424
    • /
    • 2002
  • In this paper, a robust fuzzy precompensated PID controller using immune algorithm for load frequency control of 2-area power system is proposed. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic based precompensation approach for PID controller. This scheme is easily implemented by adding a fuzzy precompensator to an existing PID controller. We optimize the fuzzy precompensator with an immune algorithm for complementing the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and fuzzy rules. Simulation results show that the proposed robust load frequency controller can achieve good performance even in the presence of generation rate constraints.

Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS)

  • Park, Min-Su;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Automatic generation control (AGC) is an important function for load frequency control, which is being implemented in Energy Management System (EMS). A key feature of AGC is to back up governors to enhance the performance of frequency control. The governor regulates system frequency in several to ten seconds, while the droop control concept results in steady-state control error. AGC is a supplementary tool for compensation of the steady-state error caused by the droop setting of the governors. As the AGC target is delivered to each generator as an open loop control target, the generator output is not guaranteed to follow the AGC target. In this paper, we introduce generating unit controller (GUC) control block, which has the purpose of enabling the generator output to track the AGC target while maintaining the governor performance. We also address the tuning methods of GUC for better performance of AGC in the Korea Energy Management System (K-EMS).

A Voltage and Frequency Controller for Stand Alone Pico Hydro Generation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.267-274
    • /
    • 2009
  • This paper deals with a voltage and frequency (VF) controller for an isolated power generation system based on an asynchronous generator (AG) driven by a pico hydro turbine. The proposed controller is a combination of a static compensator (STATCOM) and an electronic load controller (ELC) for decoupled control of the reactive and active powers of the AG system to control the voltage and frequency respectively. The proposed generating system along with its VF controller is modeled in MATLAB using SIMULINK and PSB (Power System Block Sets) toolboxes. The performance of the controller is verified for the proposed system and feeding various types of consumer load such as linear/non-linear, balanced/unbalanced and dynamic loads.

Stability Improvement of Distributed Power Generation Systems with an LCL-Filter Using Gain Scheduling Based on Grid Impedance Estimations

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.599-605
    • /
    • 2011
  • This paper proposes a gain scheduling method that improves the stability of grid-connected systems employing an LCL-filter. The method adjusts the current controller gain through an estimation of the grid impedance in order to reduce the resonance that occurs when using an LCL-filter to reduce switching harmonics. An LCL-filter typically has a frequency spectrum with a resonance peak. A change of the grid-impedance results in a change to the resonant frequency. Therefore an LCL-filter needs a damping method that is applicable when changing the grid impedance for stable system control. The proposed method instantaneously estimates the grid impedance and observes the resonant frequency at the same time. Consequently, the proposed method adjusts the current controller gain using a gain scheduling method in order to guarantee current controller stability when a change in the resonant frequency occurs. The effectiveness of the proposed method has been verified by simulations and experimental results.

ON THE ADAPTED PARTIAL DIFFERENTIAL EQUATION FOR GENERAL DIPLOID MODEL OF SELECTION AT A SINGLE LOCUS

  • Won Choi
    • Korean Journal of Mathematics
    • /
    • 제32권2호
    • /
    • pp.213-218
    • /
    • 2024
  • Assume that at a certain locus there are three genotypes and that for every one progeny produced by an IAIA homozygote, the heterozygote IAIB produces. W. Choi found the adapted partial differential equations for the density and operator of the frequency for one gene and applied this adapted partial differential equations to several diploid model. Also, he found adapted partial differential equations for the diploid model against recessive homozygotes and in case that the alley frequency occurs after one generation of selection when there is no dominance. (see. [1, 2]). In this paper, we find the adapted partial equations for the model of selection against heterozygotes and in case that the allele frequency changes after one generation of selection when there is overdominance. Finally, we shall find the partial differential equation of general type of selection at diploid model and it also shall apply to actual examples. This is a very meaningful result in that it can be applied in any model.

Effect of Load Modeling on Low Frequency Current Ripple in Fuel Cell Generation Systems

  • Kim, Jong-Soo;Choe, Gyu-Yeong;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.307-318
    • /
    • 2010
  • In this work, an accurate analysis of low frequency current ripple in residential fuel cell power generation systems is performed based on the proposed residential load model and its unique operation algorithm. Rather than using a constant dc voltage source, a proton exchange membrane fuel cell (PEMFC) model is implemented in this research so that a system-level analysis considering the fuel cell stack, power conditioning system (PCS), and the actual load is possible. Using the attained results, a comparative study regarding the discrepancies of low frequency current ripple between a simple resistor load and a realistic residential load is performed. The data indicate that the low frequency current ripple of the proposed residential load model is increased by more than a factor of two when compared to the low frequency current ripple of a simple resistor load under identical conditions. Theoretical analysis, simulation data, and experimental results are provided, along with a model of the load usage pattern of low frequency current ripples.

벤츄리 노즐 출구 형상과 작동 조건에 따른 캐비테이션 기포 발생 특성 연구 (Generation of emulsions due to the impact of surfactant-laden droplet on a viscous oil layer on water)

  • 오창훈;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.94-102
    • /
    • 2023
  • Three design parameters were considered in this study: outlet nozzle angle (30°, 60°, 80°), neck length (1 mm, 3 mm), and flow rate (0.5, 0.6, 0.7, 0.8 lpm). A neck diameter of 0.5 mm induced cavitation flow at a venture nozzle. A secondary transparent chamber was connected after ejection to increase bubble duration and shape visibility. The bubble size was estimated using a Gaussian kernel function to identify bubbles in the acquired images. Data on bubble size were used to obtain Sauter's mean diameter and probability density function to obtain specific bubble state conditions. The degree of bubble generation according to the bubble size was compared for each design variable. The bubble diameter increased as the flow rate increased. The frequency of bubble generation was highest around 20 ㎛. With the same neck length, the smaller the CV number, the larger the average bubble diameter. It is possible to increase the generation frequency of smaller bubbles by the cavitation method by changing the magnification angle and length of the neck. However, if the flow rate is too large, the average bubble diameter tends to increase, so an appropriate flow rate should be selected.

주파수 영역 MMSE 등화방식 기반의 SC-FDMA 시스템을 위한 개선된 LLR 생성 기법 (An Improved LLR Generation Technique for SC-FDMA Systems Using Frequency Domain MMSE Equalization)

  • 김진민;임태호;김재권;이주현;조용수
    • 한국통신학회논문지
    • /
    • 제34권12C호
    • /
    • pp.1197-1207
    • /
    • 2009
  • Orthogonal Frequency Multiple Access (OFDMA) 방식은 차세대 이동통신을 위한 다중접속 방식으로 널리 고려되고 있으나 Peak-to-Average Power Ratio (PAPR)이 높다는 단점이 있다. 따라서, 송신전력에 민감한 상향링크에서는 PAPR이 낮은 Single Carrier Frequency Division Multiple Access (SC-FDMA) 방식이 OFDMA 방식보다 더 적합한 것으로 여겨지고 있다. 본 논문에서는 주파수 영역 MMSE 등화방식을 기반으로 한 SC-FDMA 시스템의 성능향상 기법을 제안한다. 제안된 기법은 채널의 다이버시티 특성과 수신신호로부터 얻는 쌍방향성 특성을 활용하여 채널복호기의 입력이 되는 Log-likelihood Ratio (LLR) 의 신뢰도를 향상시키는 방식이다. 본 논문에서는 제안된 방식에 의해 추가적으로 증가하는 복잡도를 분석하고, 이에 따른 성능이득을 모의실험을 통해 검증한다.

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • 제7권2호
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.