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ON THE ADAPTED PARTIAL DIFFERENTIAL EQUATION FOR

GENERAL DIPLOID MODEL OF SELECTION AT A SINGLE

LOCUS

Won Choi

Abstract. Assume that at a certain locus there are three genotypes and that for
every one progeny produced by an IAIA homozygote, the heterozygote IAIB pro-
duces. W. Choi found the adapted partial differential equations for the density and
operator of the frequency for one gene and applied this adapted partial differen-
tial equations to several diploid model. Also, he found adapted partial differential
equations for the diploid model against recessive homozygotes and in case that the
alley frequency occurs after one generation of selection when there is no dominance.
(see. [1, 2]).
In this paper, we find the adapted partial equations for the model of selection against
heterozygotes and in case that the allele frequency changes after one generation of
selection when there is overdominance. Finally, we shall find the partial differential
equation of general type of selection at diploid model and it also shall apply to actual
examples. This is a very meaningful result in that it can be applied in any model.

1. Introduction

Assume that at a certain locus there are three genotypes and that for every one
progeny produced by an IAIA homozygote, the heterozygote IAIB produces. To
calculate a genotypic frequency, we add up the number of individuals possessing a
genotype and divide by the total number of individuals in the sampleN . The gene pool
of a population can be represented in terms of allelic frequencies. Allelic frequencies
can be calculated from the numbers or the frequencies of the genotypes. To calculate
the allelic frequency from the numbers of genotypes, we count the number of copies
of a particular allele present among the genotypes and divide by the total number of
all alleles in the sample. ( [5])

Suppose that NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB

respectively and N is the total number of populations. For a locus with only two
alleles, the frequencies of the alleles are usually represented by p and q, respectively.
To calculate the number of copies of the allele in the numerator of the equation, we
add twice the number of homozygotes (2NAA or 2NBB) to the number of heterozygotes
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NAB and divide by 2N . Since the sum of the allelic frequencies always equal 1, we
have p and q.

Also, the alleles frequencies can be calculated from the genotype frequencies. To
calculate allelic frequencies from genotype frequencies, we add the frequency of the
homozygote for each allele to half the frequency of the heterozygote( [5]);

p = f(IA) = f(IAIA) +
1

2
f(IAIB)

q = f(IB) = f(IBIB) +
1

2
f(IAIB)

W. Choi found the adapted partial differential equations for the density and op-
erator of the frequency for one gene and applied this adapted equations to several
diploid model.( [2]). Also, he found adapted partial differential equations for the
model against recessive homozygotes and in case that the alley frequency occurs after
one generation of selection when there is no dominance. ( [1])

In this paper, we find adapted partial equations for the model of selection against
heterozygotes and in case that the alley frequency changes after one generation of
selection when there is overdominance. Finally, we shall find the partial differential
equation of general type of selection at diploid model and it also shall apply to actual
examples. This is a very meaningful result in that it can be applied in any model.

2. The Main Results

We begin with the probability about the frequency of allele;
Lemma 1. Denote x(t, p) be the probability that IA become fixed by time t-th

generation, given that its initial frequency is p. Then we have adapted equation

∂x

∂t
=

pq

4N

∂2x

∂p2
+M(t)

∂x

∂p

where M(t) is mean change respectively for frequence of alleles.

Proof. This result follows easily from the property of dyploid model and the result
of M. Kimura.( [3])

We denote the frequency of the IAIA genotype, IAIB genotype and IBIB genotype
in diploid model by τ1, τ2 and τ3, respectively.

When selection is for one genotype, selection is automatically against at least one
other genotype. The selection coefficien is defined by the relative intensity of selection
against a genotype( [4]).

The related variable for selection coefficient is the fitness. The fitness means the
relative reproductive success of a genotype in case of natural selection. The natural
selection occurs when individuals with adaptive traits produce a greater numbers of
offspring than that produced by others in the population. If the adaptive traits have
a genetic basis, they are inherited by the offspring and appear with greater frequency
in the next generation ( [4], [5]).

In diplod model, suppose that p is the frequency of allele IA and q is the frequency
of allele IB. Assume that the allelic frequencies do not change and the genotypic
frequencies will not change after one generation in the proportion p2 (the frequency
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of IAIA), 2pq (the frequency of IAIB) and q2 (the frequency of IBIB). The popula-
tion is said to be in Hardy-Weinburg equilibrium when genotype are in the expected
proportions of p2, 2pq, q2,( [4], [5]).

Firstly, we consider situations in which the heterozygotes have upper selection
coefficient than either homozygote. In this case, we can suppose that the two types
of homozygotes have equal fitness 1.

Then we have;

Theorem 2. Assume that the allele frequency changes after one generation of
selection against heterozygotes with selection coefficient α. The adapted equation

∂x

∂t
=

pq

4N

∂2x

∂p2
+
αpq(2p− 1)

1 − 2αpq

∂x

∂p

for frequence of alleles IA and

∂x

∂t
=

pq

4N

∂2x

∂p2
+
αpq(2q − 1)

1 − 2αpq

∂x

∂p

for frequence of alleles IB.

Proof. Since the fitness for genotype IAIA, IAIB and IBIB are 1, 1−α, 1, respec-
tively, we have the average fitness

p2 + 2pq(1 − α) + q2 = 1 − 2αpq.

The frequency of the IA allele after one generation of selection is calculated by τ1+ 1
2
τ2.

Therefore The frequency of the IA allele is

p2 + pq(1 − α)

1 − 2αpq
=
p(1 − αq)

1 − 2αpq
.

Since the mean change for allele IA is

p(1 − αq)

1 − 2αpq
− p =

αpq(2p− 1)

1 − 2αpq
,

we have the first result from Lemma 1.
On the other hand, the frequency of the IB allele after one generation of selection

is calculated by 1
2
τ2 + τ3. Therefore the frequency of the IB allele

pq(1 − α) + q2

1 − 2αpq
=
q(1 − αp)

1 − 2αpq
.

Since the mean change for allele IB is

q(1 − αp)

1 − 2αpq
− q =

αpq(2q − 1)

1 − 2αpq
,

we have the second result from Lemma 1.

Selection in favor of the heterozygotes over both homozygotes is known as over-
dominance. With overdominance, both alleles are favored in the heterozygotes and
neither allele is eliminated from the population.

Then we have ;
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Theorem 3. Assume that the allele frequency changes after one generation of
selection with the selection coefficient α of heterozygote when there is overdominance.
The adapted equations

∂x

∂t
=

pq

4N

∂2x

∂p2
+

pq(tq − αp)

1 − αp2 − tq2
∂x

∂p

for frequence of alleles IA and

∂x

∂t
=

pq

4N

∂2x

∂p2
+

pq(αp− tq)

1 − αp2 − tq2
∂x

∂p

for frequence of alleles IB.

Proof. Since the fitness for each genotype IAIA, IAIB and IBIB are 1−α, 1, 1− t
respectively, we have the average fitness

p2(1 − α) + 2pq + q2(1 − t) = 1 − αp2 − tq2.

The frequency of the IA allele after one generation of selection is calculated by τ1+ 1
2
τ2.

Therefore the frequency of the IA allele is

p2(1 − α) + pq

1 − αp2 − tq2
=

p(1 − αp)

1 − αp2 − tq2
.

Since the mean change for allele IA is

p(1 − αp)

1 − αp2 − tq2
− p =

αp2(p− 1) + tpq2

1 − αp2 − tq2
=

pq(tq − αp)

1 − αp2 − tq2
,

we have the first result from Lemma 1.
Similarly, the frequency of the IB allele after one generation of selection is calculated

by 1
2
τ2 + τ3. Since the mean change for allele IB is

pq + q2(1 − t)

1 − αp2 − tq2
− q =

tq2(q − 1) + αp2q

1 − αp2 − tq2
=

pq(αp− tq)

1 − αp2 − tq2
,

and we have the second result from Lemma 1.

An example of overdominance is stick-cell anemia in humans, a disease that results
from a mutation in one of the gene that encodes hemoglobin.( [4])

So far, Choi have showed the adapted partial differential equation of various model
of selection. They are all special cases of more general model of selection at single
locus. We shall find the partial differential equation of general model at diploid model.

We conclude with general type of selection;

Theorem 4. Assume that the selection coefficients for each genotype IAIA, IAIB

and IBIB are α1, α2, α3 respectively. The adapted equations

∂x

∂t
=

pq

4N

∂2x

∂p2
+ pq

p(α1 − α2) + q(α2 − α3)

α̂

∂x

∂p

for frequence of alleles IA and

∂x

∂t
=

pq

4N

∂2x

∂p2
+ pq

p(α2 − α1) + q(α3 − α2)

α̂

∂x

∂p

for frequence of alleles IB. Here α̂ = p2(1 − α1) + 2pq(1 − α2) + q2(1 − α3).
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Proof. Since the selection coefficients for each genotype IAIA, IAIB and IBIB are
α1, α2, α3 respectively, the average fitness is

α̂ = p2(1 − α1) + 2pq(1 − α2) + q2(1 − α3).

The frequency of the IA allele after one generation of selection is

p2(1 − α1) + pq(1 − α2)

α̂
.

Since the mean change for allele IA is

p2(1 − α1) + pq(1 − α2)

α̂
− p =

pq(1 − α2)(q − p) + p2q(1 − α1) − pq2(1 − α3)

α̂

= pq
p(α1 − α2) + q(α2 − α3)

α̂
,

we have the first result from Lemma 1
Similarly, the frequency of the IB allele after one generation of selection is calculated
by adding the frequency of the IBIB genotype and half of the frequency of the IAIB

genotype. Therefore, the mean change for allele IB is

pq(1 − α2) + q2(1 − α3)

α̂
− q =

pq(1 − α2)(p− q) + pq2(1 − α3) − p2q(1 − α1)

α̂

= pq
p(α2 − α1) + q(α3 − α2)

α̂

and we have the second result from Lemma 1.

Remark 1. The results of selection depend on the fitnesses or selection coefficients
of the genotypes in a population as we’ve already seen in the Theorem 2 and 3. For
example, in case that dominant allele IA confers a fitness advantage, the fitnesses of
genotypes IAIA and IAIB are equal and higher than the fitness of IAIB. Also, in case
that the heterozygotehas lower fitness than either homozygote, we called this type of
selection by underdominance. Underdominance means that allelic frequencies do not
change as long as they are at equilibrium. Theorem 4 is a very meaningful result in
that it can be applied in any model.

The next example is underdominance type of selection in which the heterozygotes
has upper selection coefficient than either homozygotes.

Example. Suppose NAA = 135, NAB = 44 and NBB = 11 which means the
number of zygotes in one generation. If the frequency of the IA allele equals p and
the frequency of the IB allele equals q, the frequency of the IA alleke is

p = f(IA) =
2NAA +NAB

2N
= 0.826.

Also, the frequency of the IB allele is

q = f(IB) =
2NBB +NAB

2N
= 1 − p = 0.174

Suppose that the average number of viable offspring produced by three genotype
IAIA, IAIB and IBIB are 10, 2 and 5, respectively. This means the average number
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of progeny per individual in next generation. We find the fitness for each genotype as
following;

the fitness of IAIA =
10

10
= 1

the fitness of IAIB =
20

10
= 0.2

the fitness of IBIB =
5

10
= 0.5

and selection coefficients are α1 = 0, α2 = 0.8, α3 = 0.5. Obviously, the heterozygotes
has upper selection coefficient than either homozygotes and we know the type of
selection is underdominance. Also α̂ = 0.0726276 and therefore from Theorem 4, we
have adapted equations

∂x

∂t
= 0.000189

∂2x

∂p2
− 1.2043769

∂x

∂p

for frequence of alleles IA and

∂x

∂t
= 0.000189

∂2x

∂p2
+ 1.204369

∂x

∂p

for frequence of alleles IB. Here the coefficients were rounded to six decimal places.

Remark 2. In case of a locus with three alleles A1, A2 and A3(triploid model),
we have six genotypes and add the frequency of the homozygote to half the frequency
of each heterozygous genotype that possesses the allels. To calculate allele frequen-
cies, we add twice the number of homozygotes to the number of heterozygotes that
possess the allele and divide 2N . We can use the same principles for diploid model
to determine the mean change for three alleles A1, A2 and A3. But in order to derive
the adapted partial differential equation for three alleles, we must first create a basic
equation for triploid model, such as Lemma 1 for diploid model. In triploid case with
three alleles, as a follow-up to this paper, we will try to proceed in the next study.
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