• Title/Summary/Keyword: Frequency Generation

Search Result 2,068, Processing Time 0.031 seconds

Two-Dimensional Correlation Analysis of Sum-Frequency Vibrational Spectra of Langmuir Monolayers

  • Lee, Jonggwan;Sung, Woongmo;Kim, Doseok
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.558-563
    • /
    • 2014
  • Sum-frequency generation spectra of a Langmuir monolayer on water surface at varying surface areas were studied with two-dimensional correlation analysis. Upon enlarging the area/molecule of the Langmuir monolayer, the sum-frequency spectra changed reflecting the conformation change of the alkyl chains of the molecules in the monolayer. These changes stood out more clearly by employing two-dimensional correlation analysis of the above sum-frequency spectra. Features not very pronounced in the original spectra such as closely-spaced spectral bands can also be easily distinguished in the two-dimensional correlation spectra.

Temperature Dependent Terahertz Generation at Periodically Poled Stoichiometric Lithium Tantalate Crystal Using Femtosecond Laser Pulses

  • Yu, N.E.;Kang, C.;Yoo, H.K.;Jung, C.;Lee, Y.L.;Kee, C.S.;Ko, D.K.;Lee, J.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.200-204
    • /
    • 2008
  • Coherent tunable terahertz generation was demonstrated in periodically poled stoichiometric lithium tantalate crystal via difference frequency generation of femtosecond laser pulses. Simultaneous forward and backward terahertz radiations were obtained around 1.35 and 0.63 THz, respectively at low temperature. By cooling the crystal to reduce losses caused by phonon absorptions, the generated THz bandwidth was as narrow as 23GHz at the center frequency of 0.63 THz. The measurement result of temperature-dependent showed gradual intensity increase of the generated terahertz pulse and red shift of the center frequency as the temperature decrease from 291 to 143 K, but insignificant reduction of the spectral bandwidth. Furthermore, the stoichiometric crystal was very suitable for the suppression of THz loss at low temperature compared to the congruent $LiNbO_3$ crystal.

The increased GUS gene inactivation over generation in Arabidopsis transgenic lines (애기장대 형질전환 식물체의 세대경과에 따른 GUS유전자의 비활성화에 관한 연구)

  • Park, Soon-Ki
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2002
  • The effect of transgene inactivation in T2, T3 and F2 generations was analyzed in progeny seedlings which had been generated by Agrobacterium (LBA4404/pBI121)-mediated transformation in Arabidopsis thaliana. In a system which investigated in the expression of $\beta$-glucuronidase(GUS)gene in kanamycin-resistant (ke $n^{R}$)seedlings, GUS inactivated seedlings were observed in 5 of 12 tested lines of T2 generation and the frequency of GUS inactivation was approximately 2.3%. Lines with multi-copies of T-DNA exhibited severe GUS gene inactivation with the frequency of 5.8% in T2 generation. In T3 generation lines exhibited GUS gene inactivation with the frequency of 1.3%. In contrast, inactivation increased dramatically up to 12.6% in multi-copy T-DNA line. A similar phenomenon was also found in F2 progeny from a transgenic line which had been crossed with wild-type Arabidopsis plant, WS-O (GUS gene inactivation frequency 9.9%). These results indicate that the foreign gene introduced into the plant was inactivated progressively in its transmission during subsequent generations and the transgenic line with multi-copies of T-DNA tended to show more increased inactivation.

Effective Impulse Impedances of Deeply Driven Grounding Electrodes

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong;Chang, Keun-Chul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.207-214
    • /
    • 2004
  • This paper presents the characteristics of transient and effective impulse impedances for deeply driven grounding electrodes used in soil with high resistivity or in downtown areas. The laboratory test associated with the time domain performance of grounding piles subjected to a lightning stroke current has been carried out using an actual-sized model grounding system. The ground impedances of the deeply driven ground rods and grounding pile under impulse currents showed inductive characteristics, and the effective impulse ground impedance owing to the inductive component is higher than the power frequency ground impedance. Both power frequency ground impedance and effective impulse ground impedance decrease upon increasing the length of the model grounding electrodes. Furthermore, the effective impulse ground impedances of the deeply driven grounding electrodes are significantly amplified in impulse currents with a rapid rise time. The reduction of the power frequency ground impedance is decisive to improve the impulse impedance characteristics of grounding systems.

Energy-efficient Custom Topology Generation for Link-failure-aware Network-on-chip in Voltage-frequency Island Regime

  • Li, Chang-Lin;Yoo, Jae-Chern;Han, Tae Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.832-841
    • /
    • 2016
  • The voltage-frequency island (VFI) design paradigm has strong potential for achieving high energy efficiency in communication centric manycore system-on-chip (SoC) design called network-on-chip (NoC). However, because of the diminished scaling of wire-dimension and supply voltage as well as threshold voltage in modern CMOS technology, the vulnerability to link failure in VFI NoC is becoming a crucial challenge. In this paper, we propose an energy-optimized topology generation technique for VFI NoC to cope with permanent link failures. Based on the energy consumption model, we exploit the on-chip communication traffic patterns and characteristics of link failures in the early design stage to accommodate diverse applications and architectures. Experimental results using a number of multimedia application benchmarks show the effectiveness of the proposed three-step custom topology generation method in terms of energy consumption and latency without any degradation in the fault coverage metric.

Relation between Spatter Generation and Waveform factor of $CO_2$ Welding in Short-Circuit Condition ($CO_2$ 용접의 단락이행 조건에서 스패터 발생과 파형인자와의 관계)

  • 김희진;강봉용;이강희;유중돈
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.95-101
    • /
    • 1998
  • Waveforms of $CO_2$ gas shielded arc welding in short circuit transfer mode was studied with the waveform analysis program, which can calculate various waveform factors such as number of short circuit event, mean and standard deviation of short circuit time and arc time. The calculated values of these factors were correlated independently or in combination with the spatter generation rate to figure out the most reliable index for evaluating spatter generation and further for arc stability. As a result this study, it was confirmed that the spatter generation tends to decrease with the increase of short circuit frequency. Further to this, it was also found that as the short circuit frequency increases the short circuit event becomes more uniform resulting in the decrease of standard deviations ($\sigma$values) of short circuit time and arc time. This result demonstrated that these factors are strongly correlated with each other and thus any one of these factors can be used for the evaluation index. In the discussion, however, short circuit frequency was proposed for the most practical index in evaluating the arc stability of short circuit transfer mode since it is the one which could be monitored in-process condition without any complex caculation process.

  • PDF

Wound-rotor induction generator system for random wave input power

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 2009
  • In this paper, the two-axis theory is adopted to analyze the secondary excited induction generator applied to random wave input generation system. The analysis by the two-axis theory helps to know the transmitted power of the induction machine. The electric variables, like as primary and secondary currents, voltages, and electric output power, were able to express as equations. These equations are help to simulate the generation system numerical model and to know the transient state of the system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled VSI connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this method, the input torque simulator in the laboratory to drive the secondary excited results show the advantage of secondary excited induction generator system for the random input wave generation system.

A Study on High Performance Converter Topology for Hydrogen Gas Generation Electrolysis System

  • Kang, Tae-Won;Go, Yu-Ran;Suh, Yong-Sug;Jeong, Jun-Ik;Rho, Do-Hawn
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.196-197
    • /
    • 2010
  • This paper investigates a high performance converter topology for hydrogen gas generation electrolysis system. The proposed converter topology consists of full-bridge inverter, medium frequency transformer, and diode rectifier. Hydrogen gas generation electrolysis process considered in the paper is analyzed and characterized by its equivalent circuit. The electrolysis cell is modeled as effective resistance, capacitance, inductance, and internal emf voltage source. The proposed converter topology provides enhanced efficiency of hydrogen gas generation process under the operating condition of dc output voltage with high frequency ripple on it. The high performance operation of proposed converter is confirmed through the simulation with the electrolysis cell considered in the equivalent circuit model.

  • PDF

Priority Rankings of the System Modifications to Reduce Core Damage Frequency of Wolsong NPP Units 2/3/4

  • Kwon, Jong-Jooh;Kim, Myung-Ki;Seo, Mi-Ro;Hong, Sung-Yull
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.899-905
    • /
    • 1998
  • The analysis priority makings the recommendation to reduce the total core damage frequency (CDF) of Wolsong nuclear Power Plant nits 2/3/4 was Performed in this paper. In order to derive the recommendation, the sensitivity analysis of CDF on which major contributors effect m performed based on the accident quantification results during Level 1 Probabilistic safety assessment (PSA). Priorities were ranked in tile way that compares the CDF reduction rate with efforts required to implement those recommendations using risk matrix

  • PDF

Gold-sapphire Plasmonic Nanostructures for Coherent Extreme-ultraviolet Pulse Generation

  • Han, Seunghwoi
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.576-582
    • /
    • 2022
  • Plasmonic high-order harmonic generation (HHG) is used in nanoscale optical applications because it can help in realizing a compact coherent ultrashort pulse generator on the nanoscale, using plasmonic field enhancement. The plasmonic amplification of nanostructures induces nonlinear optical phenomena such as second-order harmonic generation, third-order harmonic generation, frequency mixing, and HHG. This amplification also causes damage to the structure itself. In this study, the plasmonic amplification according to the design of a metal-coated sapphire conical structure is theoretically calculated, and we analyze the effects of this optical amplification on HHG and damage to the sample.