DOI QR코드

DOI QR Code

The increased GUS gene inactivation over generation in Arabidopsis transgenic lines

애기장대 형질전환 식물체의 세대경과에 따른 GUS유전자의 비활성화에 관한 연구

  • Park, Soon-Ki (Department of Agronomy, Kyungpook National University)
  • Published : 2002.02.01

Abstract

The effect of transgene inactivation in T2, T3 and F2 generations was analyzed in progeny seedlings which had been generated by Agrobacterium (LBA4404/pBI121)-mediated transformation in Arabidopsis thaliana. In a system which investigated in the expression of $\beta$-glucuronidase(GUS)gene in kanamycin-resistant (ke $n^{R}$)seedlings, GUS inactivated seedlings were observed in 5 of 12 tested lines of T2 generation and the frequency of GUS inactivation was approximately 2.3%. Lines with multi-copies of T-DNA exhibited severe GUS gene inactivation with the frequency of 5.8% in T2 generation. In T3 generation lines exhibited GUS gene inactivation with the frequency of 1.3%. In contrast, inactivation increased dramatically up to 12.6% in multi-copy T-DNA line. A similar phenomenon was also found in F2 progeny from a transgenic line which had been crossed with wild-type Arabidopsis plant, WS-O (GUS gene inactivation frequency 9.9%). These results indicate that the foreign gene introduced into the plant was inactivated progressively in its transmission during subsequent generations and the transgenic line with multi-copies of T-DNA tended to show more increased inactivation.

Agrobacterium(LBA4404/pBI1121)을 이용하여 형질전환된 애기장대 (Arabidopsis thaliana)를 대상으로 T2, T3, F3세대에서의 도입된 외래 유전자의 비활성화 현상을 조사하였다. Kanamaycin저항성 개체들의 GUS유전자 발현을 분석한 결과, T2세대에서 조사된 12계통 중 5계통에서 GUS 비활성 개체가 관찰되었다 (GUS유전자 비활성율 2.3%). Multi copy T-DNA 계통을 조사한 결과, GUS 비활성 정도가 더욱 심해짐이 관찰되었다 (5.8%). T3 세대에서 single copy T-DNA 계통들은 1.3%의 GUS 비활성율을 보인 반면, multi-copy T-DNA 계통에서의 비활성율은 12.6%로 급격히 증가하였다. 유사한 현상이 형질전환 식물체와 정상개체를 교배하여 생산된 F2 계통에서도 관찰되었다 (비활성율 9.9%). 본 실험으로 식물체에 도입된 외래 유전자가 후대에서의 전이과정동안 점진적으로 비활성화되고, 이 현상은 multi copy T-DNA 계통에서 훨씬 심각함이 밝혀졌다.

Keywords

References

  1. Plant Physiol. v.99 DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene Bochardt, A.;L. Hodal;G. Palmgren;O. Mattsson;F. T. Okkels https://doi.org/10.1104/pp.99.2.409
  2. Plant J. v.5 Stable genetic transformation of Arabidopsis thaliana by Agroacterium inoculation in planta Chang, S. S.;S. K. Park;B. C. Kim;B. J. Kang;D. U. Kim;H. G. Nam https://doi.org/10.1046/j.1365-313X.1994.5040551.x
  3. Plant Mol. Biol. Rep. v.1 A plant minipreparation; version Ⅱ Dellaporta, S. L.;J. Wood;J. B. Hicks https://doi.org/10.1007/BF02712670
  4. Bio/technology v.12 Transgene inactivation;Plant fight back Finnegan, J.;D. McElroy https://doi.org/10.1038/nbt0994-883
  5. Plant Mol. Biol. v.15 The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants Hobbs, S. L. A.;P. Kpodar;C. M. O. DeLong https://doi.org/10.1007/BF00039425
  6. Plant Mol. Biol. v.21 Transgene copy number can be positively or negatively associated with transgene expression Hobbs, S. L. A.;T. D. Warkentin;C. M. O. DeLong https://doi.org/10.1007/BF00039614
  7. Plant Mol. Biol. Rep. v.5 Assaying chimeric gene in plants;the GUS gene fusion system Jefferson, R. A. https://doi.org/10.1007/BF02667740
  8. EMBO J. v.6 GUS fusions;β-glucuronidase as a sensitive and versatile gene fusion marker in higher plant Jefferson, R. A.;T. A. Kavanagh;M. W. Bevan
  9. Trends Biotechnol v.8 Altered gene expression in plants due to trans interaction between homologous genes Jorgensen, R. https://doi.org/10.1016/0167-7799(90)90220-R
  10. Plant Mol. Biol. v.12 Rapid induction of genomic demethylation and T-DNA gene expression in plant cells by 5-azacytosine derivatives Klass, M.;M. C. John;D. N. Crowell;R. M. Amasino https://doi.org/10.1007/BF00017581
  11. Curr. Opinion Biotechnol. v.4 Transinactivation of gene expression in plants Kooter, J. M.;J. N. M. Mol. https://doi.org/10.1016/0958-1669(93)90118-G
  12. Mol. Gen. Genet. v.244 Homology-de-pendent gene silencing in transgenic plants;epistatic silencing loci contain multiple copies of methylated transgenes Matzke, A. J. M.;F. Neuhuber;Y. -D. Park;P. F. Ambros;M. A. Matzke
  13. EMBO J. v.8 Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants Matzke, M. A.;M. Priming;J. Trnovsky;A. J. M. Matzke
  14. Mol. Gen. Genet. v.243 Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA;an indication for specific recognition of foreign DNA in transgene plants Meyer, P;I. Heidmann
  15. Mol. Gen. Genet. v.222 Epigenetic changes in the expression of the maize A1 gene in petunia hybrida;role of numbers of integrated gene copies and state of methylation Linn, F.;I. Heidmann;H. Saedler;P. Meyer https://doi.org/10.1007/BF00633837
  16. Plant Sci. v.88 Differential methylation and expression of the β-glucuronidase and neomycin phosphotransferase genes in transgenic plants of potato cv. Bintje Ottaviani, M-P.;T. Smits;C. H. Hanisch ten Cate https://doi.org/10.1016/0168-9452(93)90111-C
  17. Plant Mol. Biol. v.21 Treatment of Agrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco Palmgren, G.;O. Mattson;F. T. Okkels https://doi.org/10.1007/BF00028801
  18. Mol. Cells v.3 Facile transformation of root explants of Arabidopsis thaliana L. Heynh. with a direct shooting medium Park, S. K.;B. C. Kim;S. S. Chang;H. J. Choi;S. Y. Lee;H. G. Nam;D. U. Kim
  19. Plant J. v.2 The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in petunia hybrida Prols, F;P. Meyer
  20. Plant Mol. Biol. v.25 Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment Register Ⅲ, J. C.;D. J. Peterson;P. J. Bell;W. P. Bullock;I. J. Evans;B. Frame;A. J. Greenland;N. S. Higgs;I. Jepson;S. Jiao;C. J. Lewnau;J. M. Sillick;H. M. Wilson https://doi.org/10.1007/BF00014669
  21. Mol. Gen. Genet. v.233 Petunia plants escapes from negative selection against a transgene by silencing the foreign DNA via methylation Penckens, S.;H. de Greve;M. van Montagu;J-P. Hernalsteens https://doi.org/10.1007/BF00587561
  22. Plant Mol. Biol. v.18 The importance of DNA methylation for stability of foreign DNA in barley Rogers, S. W.;J. C. Rogers https://doi.org/10.1007/BF00019208
  23. Mol. Gen. Genet. v.228 Reversible inactivation of a transgene in Arabidopsis thaliana Scheid, O. M.;J. Paszkowski;I. Potrykus