• 제목/요약/키워드: Frequency Dependent network Equivalent(FDNE)

검색결과 12건 처리시간 0.025초

전자기 과도현상 해석을 위한 S 영역 등가시스템 PART I : 주파수 의존 시스템 등가 (S-Domain Equivalent System for Electromagnetic Transient Studies PART I : Frequency Dependent Network Equivalent)

  • 왕용필
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권11호
    • /
    • pp.632-638
    • /
    • 2003
  • Modern power systems are very complex and to model them completely is impractical for electromagnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of frequency dependent equivalent. The s-domain rational function form of frequency dependent equivalent does not need refitting if the simulation time-step is changed in the electromagnetic transient program. This is because the s-domain rational function coefficients are independent of the simulation time-step, unlike the z-domain rational function coefficients. S-domain rational function fitting techniques for representing frequency dependent equivalents have been developed using Least Squares Fitting(LSF). However it does not suffer the implementation error that exited in this work as it ignored the instantaneous term. This paper Presents the formulation for developing 1 Port Frequency Dependent Network Equivalent(FDNE) with the instantaneous term in S-domain and illustrates its use. This 1 port FDNE have been applied to the CIGRE Benchmark Rectifier test AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 1 port (FDNE) developed with Thevenin and Norton Equivalent network. The study results have indicated the robustness and accuracy of 1 port FDNE for electromagnetic transient studies.

전자기 과도현상 해석과 고조파 평가를 위한 S영역 주파수 의존 등가시스템 개발 (S-Domain Frequency Dependent Network Equivalent for Electromagnetic Transient and Harmonic Assessment)

  • 왕용필;정형환;이준탁;한형주;김해재;정동일;곽노홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.143-144
    • /
    • 2006
  • The recent power systems are very complex and to model them completely is impractical for analysis of electromagnetic transient Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing Frequency Dependent Network Equivalent (FDNE) using S-domain rational Function Fitting is presented and demonstrated. The FDNE is generated by Linearized Least Squares Fitting(LSF) of the frequency response of a S-domain formulation. This Three-port FDNE have been applied to the test AC power system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the Three-port FDNE developed under different condition. The study results have indicated the robustness and accuracy of Three-port FDNE for analisys of electromagnetic transient and harmonic assessment.

  • PDF

전자기 과도현상 해석과 고조파 평가를 위한 Z영역 주파수 의존 등가시스템 개발 (Z-Domain Frequency Dependent Network Equivalent for Electromagnetic Transient and Harmonic Assessment)

  • 왕용필;정형환;김경엽;이준탁;한형주;안병철;전영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.145-146
    • /
    • 2006
  • The recent power systems are very complex and to model them completely is impractical for analysis of electromagnetic transient. Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing Frequency Dependent Network Equivalent (FDNE) using Z-domain rational Function Fitting is presented and demonstrated. The FDNE is generated by Linearized Least Squares Fitting(LSF) of the frequency response of a Z-domain formulation. This Three-port FDNE have been applied to the test AC power system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the Three-port FDNE developed under different condition. The study results have indicated the robustness and accuracy of Three-port FDNE for analisys of electromagnetic transient and harmonic assessment.

  • PDF

전자기 과도현상 해석을 위한 S 영역 등가시스템 PART 2 :주파수 의존 교류 시스템 등가 (S-Domain Equivalent System for Electromagnetic Transient Studies PART 2 : Frequency Dependent Network Equivalent)

  • 왕용필;이현정;정형환;안병철;김해재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.283-285
    • /
    • 2004
  • Modern power systems are very complex and to model them completely is impractical for electromagnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of frequency dependent equivalent. This paper presents the formulation for developing 1 & 2 port Frequency Dependent Network Equivalent (FDNE) with the instantaneous term in S-domain and illustrates its use. This 1 & 2 Port FDNE have been applied to the CIGRE Benchmark Rectifier test AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 1 & 2 port (FDNE) developed with Norton Equivalent network.

  • PDF

전자기 과도 현상 해석을 위한 Z 영역에서의 주파수 의존 교류시스템 등가 (Z-Domain Frequency Dependent AC System Equivalent for Electromagnetic Transient Studies)

  • 왕용필;허동렬;박희철;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.252-255
    • /
    • 2001
  • Modern power systems are very complex and to model them completly is impractical for electromgnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing FDNE is presented and demonstrated. The FDNE is generated by Linearized Least Square fitting the frequency response of a z-domain formulation. The advantage of this approach is that a direct implementation occurs which dose not incur errors due to discretization inherent with implementing a fitting function in the s-domain. The developed FDNE is accurate and efficient.

  • PDF

유전알고리즘을 이용한 주파수의존 등가회로 모델개발과 전자기 과도현상 해석 (Development of Frequency Dependent Equivalent using Genetic Algorithm and it's Application for Electromagnetic Transient Analysis of Practical Power System Model)

  • 최선영;박승엽
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.104-112
    • /
    • 2015
  • This paper deals with an methodology for acquiring optimal order of rational function model in FDNE(frequency dependent network equivalents) with GA(genetic Algorithm). In order to analyze the modern power system with huge complexity, an practical and efficient equivalent model is needed which represents the system's characteristics of transient phenomenon. this paper shows developing a z domain rational function model which have the resultant coefficient from proposed GA simulation. To demonstrate this methodology, some simulations are performed with practical power system of NZ which applied with fault condition and nonlinear converter load.

전자기 과도현상 해석을 위한 주파수 의존 시스템 등가 (Frequency Dependent Network Equivalent for Electromagnetic Transient Studies)

  • 왕용필;조금식
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1549-1555
    • /
    • 2007
  • The complexity of modern power systems often makes it impractical to model it in its entirety for electromagnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). The advantage of using z-domain fitting is that it can be directly implemented in a digital simulation program without any loss of accuracy. Fitting in the s-domain always requires "discretizing" a continuous system and the inherent approximations. This paper presents z-domain rational function formulation and demonstrates the use of it for the assessment of the transient response of the Lower South Island of New Zealand. Moreover by using a well publicized test system and providing complete information on the developed FDNE coefficients other researchers easily benchmark their work against this.

전자기 과도현상 해석을 위한 S 영역 등가시스템 PART II: 주파수 의존 교류 시스템 등가 (S-Domain Equivalent System for Electromagnetic Transient Studies PART II : Frequency Dependent AC System Equivalent)

  • 정형환;왕용필
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권4호
    • /
    • pp.165-171
    • /
    • 2005
  • Electromagnetic transient simulation can be used to model complex non-linearities that very difficult to represent adequately in the frequency domain. This problem is greatly reduced with the use of frequency dependent network equivalents for the linear part of the system. S-domain rational function fitting techniques for representing frequency dependent equivalents have been developed using Least Squares Fitting(LSF). However it does not suffer the implementation error that exited in this work as it ignored the instantaneous term. This paper presents the formulation for developing 2 port Frequency Dependent AC System Equivalent(FDACSE) with the instantaneous term in S-domain and illustrates its use. This 2 port FDNE have been applied to the New Zealand AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 2 port (FDACSE) developed with Norton Equivalent network. The study results have indicated the robustness and accuracy of 2 port FDACSE for electromagnetic transient studies.

전자기 과도현상 해석을 위한 Z 영역에서의 주파수 의존 교류시스템 등가 (Z-Domain Frequency Dependent AC System Equivalent for Electromagnetic Transient Studies)

  • 왕용필;정형환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권6호
    • /
    • pp.296-301
    • /
    • 2002
  • Modern power systems are very complex and to model them completely is impractical for electromagnetic transient studies. Therefore areas outside the immediate area of interest must be represented by some form of Frequency Dependent Network Equivalent (FDNE). In this paper a method for developing Frequency Dependent AC system Equivalent (FDACSE) using Z-domain rational Function Fitting is presented and demonstrated. The FDACSE is generated by Linearized Least Squares Fitting(LSF) of the frequency response of a Z-domain formulation. This 1 & 2 port FDACSE have been applied to the New Zealand South Island AC power system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 1 & 2 port FDACSE developed under different condition (linear load, fault and nonlinear loading). The study results have indicated the robustness and accuracy of 1 & 2 port FDACSE for electromagnetic transient studies.

전자기 과도현상 시뮬레이션을 위한 주파수 의존 등가 시스템 개발 (Frequency Dependent Equivalent System for Electromagnetic Transient Simulation)

  • 한형주;이철영;왕용필;정형환;김상효;안병철;김해재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.202-204
    • /
    • 2005
  • This paper presents the formulation for developing 2 port Frequency Dependent AC System Equivalent(FDACSE) with the instantaneous term in 5-domain and illustrates its use. This 2 port FDNE have been applied to the New Zealand AC system. The electromagnetic transient package PSCAD/EMTDC is used to assess the transient response of the 2 port (FDACSE) developed with Norton Equivalent network. The study results have indicated the robustness and accuracy of 2 port FDACSE for electromagnetic transient studies.

  • PDF