• 제목/요약/키워드: Frequency Assignment Problem

Search Result 48, Processing Time 0.036 seconds

A Genetic Algorithm Approach to the Frequency Assignment Problem on VHF Network of SPIDER System

  • Kwon, O-Jeong
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.1
    • /
    • pp.56-69
    • /
    • 2000
  • A frequency assignment problem on time division duplex system is considered. Republic of Korea Army (ROKA) has been establishing an infrastructure of tactical communication (SPIDER) system for next generation and it will be a core network structure of system. VHF system is the backbone network of SPIDER, that performs transmission of data such as voice, text and images. So, it is a significant problem finding the frequency assignment with no interference under very restricted resource environment. With a given arbitrary configuration of communications network, we find a feasible solution that guarantees communication without interference between sites and relay stations. We formulate a frequency assignment problem as an Integer Programming model, which has NP-hard complexity. To find the assignment results within a reasonable time, we take a genetic algorithm approach which represents the solution structure with available frequency order, and develop a genetic operation strategies. Computational result shows that the network configuration of SPIDER can be solved efficiently within a very short time.

  • PDF

Frequency Assignment Method using NFD and Graph Coloring for Backbone Wireless Links of Tactical Communications Network (통합 필터 변별도와 그래프 컬러링을 이용한 전술통신망 백본 무선 링크의 주파수 지정 방법)

  • Ham, Jae-Hyun;Park, Hwi-Sung;Lee, Eun-Hyoung;Choi, Jeung-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.441-450
    • /
    • 2015
  • The tactical communications network has to be deployed rapidly at military operation area and support the communications between the military command systems and the weapon systems. For that, the frequency assignment is required for backbone wireless links of tactical communications network without frequency interferences. In this paper, we propose a frequency assignment method using net filter discrimination (NFD) and graph coloring to avoid frequency interferences. The proposed method presents frequency assignment problem of tactical communications network as vertex graph coloring problem of a weighted graph. And it makes frequency assignment sequences and assigns center frequencies to communication links according to the priority of communication links and graph coloring. The evaluation shows that this method can assign center frequencies to backbone communication links without frequency interferences. It also shows that the method can improve the frequency utilization in comparison with HTZ-warfare that is currently used by Korean Army.

Hierarchical Cellular Network Design with Channel Allocation Using Genetic Algorithm (유전자 알고리즘을 이용한 다중계층 채널할당 셀룰러 네트워크 설계)

  • Lee, Sang-Heon;Park, Hyun-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.321-333
    • /
    • 2005
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. As demand for services has expanded in the cellular segment, sever innovations have been made in order to increase the utilization of bandwidth. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. Hierarchical network design holds the public eye because of increasing demand and quality of service to mobile users. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. In addition, we know the avenue and demand as an assumption. We propose the network about the profit maximization. This study can apply to GSM(Global System for Mobile Communication) which has 70% portion in the world. Hierarchical network design using GA(Genetic Algorithm) is the first three-tier (Macro, Micro, Pico) model, We increase the reality through applying to EMC (Electromagnetic Compatibility Constraints). Computational experiments on 72 problem instances which have 15${\sim}$40 candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers more than 90% of the demand.

  • PDF

Better Analysis of Lower Bounds of Frequency Assignment Problems in Wireless Networks with Cellular Topology (셀룰러 위상구조 무선망에서의 주파수 할당 문제의 향상된 하한 값 분석)

  • Lee, Sang-Kyu;Lee, Ju-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.11
    • /
    • pp.830-835
    • /
    • 2006
  • Because of its exponential growth of data and voice transmissions through wireless communications, efficient resource management became more important factor when we design wireless networks. One of those limited resources in the wireless communications is frequency bandwidth. As a solution of increasing reusability of resources, the efficient frequency assignment problems on wireless networks have been widely studied. One suitable approach to solve these frequency assignment problems is transforming the problem into traditional graph coloring problems in graph theory. However, most of frequency assignments on arbitrary network topology are NP-Complete problems. In this paper, we consider the Chromatic Bandwidth Problem on the cellular topology wireless networks. It is known that the lower bound of the necessary number of frequencies for this problem is $O(k^2)$. We prove that the lower bound of the necessary number of frequencies for the Chromatic Bandwidth Problem is $O(k^3)$ which is tighter lower bound than the previous known result.

Tutorial on Frequency and Polarization Assignment Algorithms for Military Communication Networks (군용 통신망에서의 주파수 및 편파 지정 알고리즘 튜토리얼)

  • Koo, Bonhong;Chae, Chan-Byoung;Park, Sung-Ho;Park, Hwi-Sung;Ham, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1608-1618
    • /
    • 2016
  • In this paper we introduce a graph theory approach to solve the frequency assignment problem(FAP) for military communication network. Prior algorithms are implemented adaptively to the problem, and enhanced algorithms are proposed to show that their results approximately approached the optimum performance. We also proposed polarization assignment algorithms to enhance the FAP performances.

A Frequency Assignment Heuristic for the Efficient Deployments of Digital TV Systems (디지털 TV로의 효율적 전환을 위한 주파수할당 근사해법 연구)

  • Paik, Chun-Hyun
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.694-702
    • /
    • 2000
  • For the graceful transition from the analog to digital TV systems, a systematic frequency assignment scheme must be incorporated into the transition planning procedure. In this study, we have studied the frequency assignment methodology for the efficient management of the limited spectrum resources. By applying the graph-theoretic approach, this study developed a new solution method for additional frequency assignment problem whose objective is to assign available frequencies for newly generated requirements (digital TV stations) with minimum reassignment of the preassigned frequencies to LPTV stations while meeting the interference-related constraints. The proposed algorithm can be effectively applied not only to the current digital TV introduction phase but also to the development phase with some further development. This study can be utilized as the basis for the future study on frequency assignments that aims at graceful transition from analog TV to digital TV.

  • PDF

Partial Pole Assignment via Constant Gain Feedback in Two Classes of Frequency-domain Models

  • Wang, Guo-Sheng;Yang, Guo-Zhen;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.111-116
    • /
    • 2007
  • The design problem of partial pole assignment (PPA) in two classes of frequency-domain MIMO models by constant gain feedback is investigated in this paper. Its aim is to design a constant gain feedback which changes only a subset of the open-loop eigenvalues, while the rest of them are kept unchanged in the closed-loop system. A near general parametric expression for the feedback gain matrix in term of a set of design parameter vectors and the set of the closed-loop poles, and a simple parametric approach for solving the proposed problem are presented. The set of poles do not need to be previously prescribed, and can be set undetermined and treated together with the set of parametric vectors as degrees of design freedom provided by the approach. An illustrative example shows that the proposed parametric method is simple and effective.

Hierarchical Cellular Network Design with Channel Allocation (채널할당을 고려한 다중계층 셀룰러 네트워크 설계)

  • Park, Hyun-Soo;Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.63-77
    • /
    • 2008
  • With the limited frequency spectrum and an increasing demand for cellular communication services, the problem of channel assignment becomes increasingly important. However, finding a conflict free channel assignment with the minimum channel span is NP hard. The innovations are cellular concept, dynamic channel assignment and hierarchical network design. We consider the frequency assignment problem and the base station placement simultaneously. Our model takes the candidate locations emanating from this process and the cost of assigning a frequency, operating and maintaining equipment as an input. Hierarchical network design using genetic algorithm is the first three-tier (Macro, Micro, Pico) model. We increase the reality through applying to Electromagnetic Compatibility Constraints. Computational experiments on 72 problem instances which have $15{\sim}40$ candidate locations demonstrate the computational viability of our procedure. The result of experiments increases the reality and covers 90% of the demand.

A Method of Client-Server Assignment for Minimizing the CPU Power Consumption of Servers in a Game Server Cluster (게임 서버 클러스터에서의 서버의 CPU 전력 소모 최소화를 위한 클라이언트-서버 배정 방법)

  • Kim, Sangchul;Lee, Sunghae
    • Journal of Korea Game Society
    • /
    • v.17 no.4
    • /
    • pp.137-148
    • /
    • 2017
  • Since the power consumption of data centers is large and computer serves take a large portion of it, there have been much research on the power saving of servers in various ways recently. Among the units of severs CPU is one of major power consuming units. In this paper, a method of client-server assignment for minimizing the CPU power consumption of servers in a game server cluster is proposed. We model the client-server assignment problem as an optimization problem, and find a solution to the problem using a simulated annealing-based technique. One of major features of our method is to select a proper operating frequency according to the amount of load on a server. The selection of a lower frequency in case of low load will result in reducing power consumption. To our survey, little research on client-server assignment in consideration of power consumption has been carried out.

Two phase algorithm for frequency assignment in cellular mobile systems with maximal distance of channel interference

  • Kim, Sehun;Kim, Seong-Lyun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.291-300
    • /
    • 1994
  • In this paper we consider the frequency assignment problem (FAP) in a cellular mobile communication system which has a maximal distance of channel interference. This special structure is observed in most cellular systems. To handle the considered FAP, we use the pattern approach which fits naturally to the problem. Based on this approach, we are able to formulate the considered FAP into a manageable optimization problem and propose a two phase heuristic algorithm for the problem. Computational experiments show that our algorithm performs much better in both solution quality and computational time than the recently developed algorithms for FAP. Since the considered FAP well reflects most cellular systems, our algorithm can be applied to many practical situations.