• Title/Summary/Keyword: Frequency Analyses

Search Result 1,841, Processing Time 0.032 seconds

Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation

  • Lais, Stefan;Liang, Quanwei;Henggeler, Urs;Weiss, Thomas;Escaler, Xavier;Egusquiza, Eduard
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.303-314
    • /
    • 2009
  • The present paper shows the results of numerical and experimental modal analyses of Francis runners, which were executed in air and in still water. In its first part this paper is focused on the numerical prediction of the model parameters by means of FEM and the validation of the FEM method. Influences of different geometries on modal parameters and frequency reduction ratio (FRR), which is the ratio of the natural frequencies in water and the corresponding natural frequencies in air, are investigated for two different runners, one prototype and one model runner. The results of the analyses indicate very good agreement between experiment and simulation. Particularly the frequency reduction ratios derived from simulation are found to agree very well with the values derived from experiment. In order to identify sensitivity of the structural properties several parameters such as material properties, different model scale and different hub geometries are numerically investigated. In its second part, a harmonic response analysis is shown for a Francis runner by applying the time dependent pressure distribution resulting from an unsteady CFD simulation to the mechanical structure. Thus, the data gained by modern CFD simulation are being fully utilized for the structural design based on life time analysis. With this new approach a more precise prediction of turbine loading and its effect on turbine life cycle is possible allowing better turbine designs to be developed.

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

System Phase Noise for Mobile Satellite Communication Service (이동형 위성통신 서비스를 위한 시스템 위상 잡음)

  • Kim Young-wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1780-1786
    • /
    • 2005
  • The phase error generated in the transmission system affects the performance of digital transmission signal. The phase error are generated by random phase noise and tracking phase error due to denier phenomenon. In the mobile satellite communication system that generates the doppler frequency, which is a system with a movement, the proper system phase noise spectrum should be designed based on analyses for phase noise and static phase error effects. Based on the analyses of the doppler frequency and the phase error for bilateral satellite communication system providing an asynchronous service, the phase noise spectrums for the mobile satellite communication are designed in this paper. Also, the available transmission services under the less doppler effect are proposed and the proper signal source units for a required transmission system can be designed under the proposed system phase noise spectrum.

Effects of house load operation on PSA based on operational experiences in Korea

  • Lim, Hak Kyu;Park, Jong-hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2812-2820
    • /
    • 2020
  • House load operation (HLO) occurs when the generator supplies power to the house load without triggering reactor trips during grid disturbances. In Korea, the HLO capability of optimized power reactor 1000 (OPR1000) plants has prevented several reactor trips. Operational experiences demonstrate the difference in the reactor trip incidence due to grid disturbances between OPR1000 plants and Westinghouse plants in Korea, attributable to the availability of the HLO capability. However, probabilistic safety assessments (PSAs) for OPR1000 plants have not considered their specific design features in the initiating event analyses. In an at-power PSA, the HLO capability can affect the initiating event frequencies of general transients (GTRN) and loss of offsite power (LOOP), resulting from transients within the grid system. The initiating event frequencies of GTRN and LOOP for an OPR1000 plant are reduced by 17.7% and 78.7%, respectively, compared to the Korean industry-average initiating event frequencies, and its core damage frequency from internal events is reduced by 15.2%. The explicit consideration of the HLO capability in initiating event analyses makes significant changes in the risk contributions of the initiating events. Consequently, for more realistic at-power PSAs in Korea, we recommend incorporating plant-specific HLO-related design features when estimating initiating event frequencies.

Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM

  • Mohammadimehr, Mehdi;Afshari, Hasan;Salemi, M.;Torabi, K.;Mehrabi, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.525-544
    • /
    • 2019
  • In the present study, buckling and free vibration analyses of annular thin sector plate made of functionally graded materials (FGMs) resting on visco-elastic Pasternak foundation, subjected to external radial, circumferential and shear in-plane loads is investigated. Material properties are assumed to vary along the thickness according to an power law with Poisson's ratio held constant. First, based on the classical plate theory (CPT), the governing equation of motion is derived using Hamilton's principle and then is solved using the generalized differential quadrature method (GDQM). Numerical results are compared to those available in the literature to validate the convergence and accuracy of the present approach. Finally, the effects of power-law exponent, ratio of radii, thickness of the plate, sector angle, and coefficients of foundation on the fundamental and higher natural frequencies of transverse vibration and critical buckling loads are considered for various boundary conditions. Also, vibration and buckling mode shapes of functionally graded (FG) sector plate have been shown in this research. One of the important obtained results from this work show that ratio of the frequency of FG annular sector plate to the corresponding values of homogeneous plate are independent from boundary conditions and frequency number.

A Study on Seismic Performance Improvement of Nuclear Piping System through Dynamic Absorber (동흡진기를 사용한 원전 배관계 내진성능 상향에 대한 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, the dynamic absorber and the damper are applied to improve the seismic performance of the piping system, and their quantitative effects on the piping system performance are examined. For this purpose, the response performances of piping system applied with the dynamic absorber/damper are compared with those of the original piping system. Firstly, the frequency response analyses of the piping system with the presence or the absence of dynamic absorber/damper are performed and these results are compared. It has been shown that the maximum acceleration response per the frequency of the piping system is considerably reduced by installing the dynamic absorber and the damper. Secondly, the seismic responses of the piping systems with and without dynamic absorber/damper are compared. As a result of the numerical analyses, it is confirmed that key responses are reduced by 17%-63% due to the installation of the dynamic absorber and damper. Finally, as a result of the seismic performance evaluation, it is confirmed that the HCLPF (High Confidence of Low Probability of Failure) seismic performances are increased by 1.22 to 2.70 times with respect to the failure modes with an aid of the dynamic absorber and damper.

Free vibration and buckling analyses of curved plate frames using finite element method

  • Oguzhan Das;Hasan Ozturk;Can Gonenli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.765-778
    • /
    • 2023
  • This study investigates the free vibration and buckling analyses of isotropic curved plate structures fixed at all ends. The Kirchhoff-Love Plate Theory (KLPT) and Finite Element Method (FEM) are employed to model the curved structure. In order to perform the finite element analysis, a four-node quadrilateral element with 5 degrees of freedom (DOF) at each node is utilized. Additionally, the drilling effect (θz) is considered as minimal to satisfy the DOF of the structure. Lagrange's equation of motion is used in order to obtain the first ten natural frequencies and the critical buckling values of the structure. The effects of various radii of curvatures and aspect ratio on the natural frequency and critical buckling load values for the single-bay and two-bay curved frames are investigated within this scope. A computer code based on finite element analysis is developed to perform free vibration and buckling analysis of curved plate frames. The natural frequency and critical buckling load values of the present study are compared with ANSYS R18.2 results. It has been concluded that the results of the present study are in good agreement with ANSYS results for different radii of curvatures and aspect ratio values of both single-bay and two-bay structures.

Identification of Egr1 Direct Target Genes in the Uterus by In Silico Analyses with Expression Profiles from mRNA Microarray Data

  • Seo, Bong-Jong;Son, Ji Won;Kim, Hye-Ryun;Hong, Seok-Ho;Song, Haengseok
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(-/-) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within -500 bp of DEG's promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.

Free Vibration Analysis of Perforated Steel Plates with Various Cutout Curvatures and Rotations (곡률과 회전을 고려한 유공 강판의 자유진동해석)

  • Woo, Jin-Ho;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-70
    • /
    • 2010
  • This study presents free vibration analyses of perforates steel plates with various cutouts. Four different parameters (shape, size, curvature radius ratio, and rotation of cutouts) were considered to investigate the effects of those parameters on the free vibration characteristics, such as natural frequencies of the perforated steel plates. Three different shapes of cutouts are circle, square, and triangle, and the considered sizes are 5, 10, 15, 20, and 25 mm. For the triangular and square cutouts, the characteristic radii of the inscribed circles of those cutouts were defined. In addition, the curvature radius ratio was defined as the ratio of curvature radius of bluntness and the characteristic radius. Then, total seven different curvature radius ratios (0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) were considered. To investigate the rotation effect of the cutouts, it was considered four rotations ($0^{\circ}$, $15^{\circ}$, $30^{\circ}$, and $45^{\circ}$) for the square cutouts and three rotations (0, 15, and 30) for the triangular cutouts. All the free vibration analyses were conducted using a general purpose finite element program. From the analyses we found that the most influential parameter for the free vibration response of the perforated plates is the size of cutout. The other factors such as the shape, curvature radius ratio, and rotation are minors; they mainly change the natural frequency as long as the size effect is accompanied.

Theoretical and experimental analysis of the lateral vibration of shafting system using strain gauges in 50,000-DWT oil/chemical tankers (스트레인 게이지를 이용한 5만 DWT 석유화학제품 운반선의 횡진동 분석에 관한 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.301-306
    • /
    • 2016
  • During the initial stage of propulsion shaft design, the shaft alignment process includes a thorough consideration of lateral vibration to verify the operational safety of the shaft. However, a theoretical method for analyzing forced lateral vibrations has not been clearly established. The methods currently used in classification societies and international standards can only ensure a sufficient margin to avoid the blade-passing frequency resonance speed outside the range of ${\pm}20%$ of the maximum continuous rating (MCR) for the engine. Typically, in shaft alignment analyses, longer center distances between the support bearings promote affirmative results, but the blade order resonance speed can approach the lower limit for lateral vibration. Therefore, this matter requires careful attention by engineers, and a verification of the theoretical analysis by experimental measurements is highly desirable. In this study, both theoretical and experimental analyses were conducted using strain gauges under two draught conditions of vessels used as 50,000-DWT oil/chemical tankers, introduced recently as eco-friendly ships. Based on the analyses, the influence of the lateral vibration on the shafting system and the system's reliability was reviewed.