• 제목/요약/키워드: Freezing temperature

검색결과 908건 처리시간 0.026초

Effects of High-Pressure, Microbial Transglutaminase and Glucono-δ-Lactone on the Aggregation Properties of Skim Milk

  • Lee, Sang Yoon;Choi, Mi-Jung;Cho, Hyung-Yong;Davaatseren, Munkhtugs
    • 한국축산식품학회지
    • /
    • 제36권3호
    • /
    • pp.335-342
    • /
    • 2016
  • The object in this study is to investigate the effects of high pressure and freezing processes on the curdling of skim milk depending on the presence of transglutaminase (TGase) and glucono-δ-lactone (GdL). Skim milk was treated with atmospheric freezing (AF), high pressure (HP), pressure-shift freezing (PSF) and high pressure sub-zero temperature (HPST) processing conditions. After freezing and pressure processing, these processed milk samples were treated with curdling agents, such as TGase and GdL. Pressurized samples (HP, PSF and HPST) had lower lightness than that of the control. In particular, PSF had the lowest lightness (p<0.05). Likewise, the PSF proteins were the most insoluble regardless of whether they were activated by TGase and GdL, indicating the highest rate of protein aggregation (p<0.05). Furthermore, the TGase/GdL reaction resulted in thick bands corresponding to masses larger than 69 kDa, indicating curdling. Casein bands were the weakest in PSF-treated milk, revealing that casein was prone to protein aggregation. PSF also had the highest G' value among all treatments after activation by TGase, implying that PSF formed the hardest curd. However, adding GdL decreased the G' values of the samples except HPST-treated samples. Synthetically, the PSF process was advantageous for curdling of skim milk.

상변화물질을 이용한 축열조에서 열전달현상에 관한 연구 - 수직원통관 내에서 응고 열전달 - (A study of heat transfer with Phase Change Material in heat storage system - Inward freezing in the vertical cylinder -)

  • 이채문;임장순
    • 태양에너지
    • /
    • 제13권2_3호
    • /
    • pp.53-64
    • /
    • 1993
  • 본 연구는 용융된 파라핀을 채운 수직원관 내의 상변화물질의 초기온도와 수직원관의 벽면온도를 변화시켰을때 관 내에서 일어나는 열전달현상을 다루었다. 자연대류의 효과는 초기과열된 액상영역 내에서 응고초기 짧은 시간에 걸쳐 일어났고, 그 후 전도열전달이 paraffin 전 영역을 지배하였다. 실험에서 관찰한 응고 형태는 상부표면에서 밀도 증가에 의한 수축공간이 발생하였으며, 그 공간의 크기는 냉각이 진행됨에 따라 증가하였다. 자연대류가 끝나자. 상경계면 상에서 수지상 결정과 mush-zone이 발견되었다. 액상 paraffin의 초기과열은 실험 전반부의 응고질량과 응고두께를 감소시키는 경향을 보였으며, 초기액상과열도와 벽면 과냉도가 큰 경우에 크게 나타났다.

  • PDF

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

지열 융설시스템을 적용한 포장체에서의 열전도 분석 (The Thermal conductivity analysis on the pavement applying geothermal snow melting system)

  • 이석진;김봉찬;서운종;이승하;이주호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.221-228
    • /
    • 2010
  • A sliding accident on the road have a high percentage by road freezing, especially, it is often appeared at bridges and Tunnel of freezing areas. Thus, the stability of road operations is enhanced by preventing a partial freezing phenomenon. According to the geothermal snow melting system analysis, a pattern of thermal conductivity is found out about pavement materials of concrete and asphalt when it is buried. The thermal conductivity study is essential that be applied the geothermal snow melting system according to heating exchanger pipe laying of lower pavements. The model tests are conducted on low temperature in freezer using the manufactured test model which is equal to pavement materials. And Many variables are discovered from numerical analyzes of the same conditions with model test.

  • PDF

폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구 (An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand)

  • 용석응;이주형;홍창우;윤경구;박제선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.117-122
    • /
    • 1998
  • Concrete structures has been deteriorated by the freezing and thawing due to temperature gap. This study was conducted to evaluate durabilite of concrete which are increasingly demanded recently. Therefore the research of durability must be executed for application of waste foundry sand concrete real structures. Concrete durability must be executed for application of waste foundry sand concrete real structures. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio, Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at $-18^{\cire}C$ and $4^{\cire}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that strength of concrete is increased the W/C ratio decrease, the Sand/Waste foundry sand ratio increase when the concrete contains AE agent and decreasing WC ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row. Therefore it is turn out the waste foundry sand could be applied to concrete from the experiment.

  • PDF

Food Preservation Technology at Subzero Temperatures: A Review

  • Shafel, Tim;Lee, Seung Hyun;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • 제40권3호
    • /
    • pp.261-270
    • /
    • 2015
  • Purpose: Cold storage is the most popular method used to preserve highly perishable foods such as beef and fish. However, at refrigeration temperatures, the shelf life of these foods is limited, and spoilage leads to massive food waste. Moreover, freezing significantly affects the food's properties. Ice crystallization and growth during freezing can cause irreversible textural damage to foods through volumetric expansion, moisture migration induced by osmotic pressure gradients, and concentration of solutes,which can lead to protein denaturation. Methods: Although freezing can preserve perishable foods for months, these disruptive changes decrease the consumer's perception of the food's quality. Therefore, the development and testing of new and improved cold storage technologies is a worthwhile pursuit. Results: The process of maintaining a food product in an unfrozen state below its equilibrium freezing temperature is known as supercooling. As supercooling has been shown to offer a considerable improvement over refrigeration for extending a perishable product's shelf life, implementation of supercooling in households and commercial refrigeration units would help diminish food waste. Conclusions: A commercially viable supercooling unit for all perishable food items is currently being developed and fabricated. Buildup of this technology will provide a meaningful improvement in the cold storage of perishable foods, and will have a significant impact on the refrigeration market as a whole.

Rat 수정란의 동결보존에 있어 동결속도 및 동해방지제에 관한 연구 (The Study on the Freezing Methods and the Cryoprotectants for Rat Embryo Preservation)

  • 유준희;이재근
    • 한국가축번식학회지
    • /
    • 제8권1호
    • /
    • pp.22-28
    • /
    • 1984
  • This experiment was carried out to investigate effects of DMSO or ethylene glycol as a cryopotectant and of freezing methods on survival rate of forozen-thawed rat 2-cell embryos by morphological observation. 2-cell embryos were recovered from oviducts of Sprague Dawley females mated with males of same strain on day 2 of pregnancy after inducing superovulation by intrapertioneal injection of PMSG and HCG. In slow freezing and thawing groups, embryos were frozen to -79$^{\circ}C$ or -196$^{\circ}C$ in a glass test tube containing 0.2ml PBI with 1.5M DMSO or 1.2M ethylene glycol at a rate of 0.3-1.0C/min. and thawed slowly. When samples were frozen to -79$^{\circ}C$, higher survival rate was obtained in the medium containing DMSO (43.9%) than ethylene glycol (41%). And similar result was obtained (32.5% in DMSO vs. 31.4% in ethylene glycol) when samples were frozen. In rapid freezing and thawing groups, embryos were frozen to -79 or -196$^{\circ}C$ in a glass test tube containing 0.2ml of PBI with 1.5M DMSO or 1.2M ethylene glycol by rapid cooling, and thawed rapidly. When samples were frozen to -79$^{\circ}C$, 1.5M DMSO (13.2%) was more effective than 1.2M ethylene glycol (6.1%). When the storage temperature was -196$^{\circ}C$, survival rates were 9.8% in 1.5M and 5.4% in 1.2M ethylene glycol.

  • PDF

풋감의 저장 중 성분변화 (Changes of Composition in Immature Green Persimmons during Storage)

  • 김효선;고정순;이장순
    • 한국식품영양학회지
    • /
    • 제9권4호
    • /
    • pp.478-483
    • /
    • 1996
  • 풋감을 30일간 저온저장(7$^{\circ}C$) 및 냉동저장(-2$0^{\circ}C$) 하면서 성분의 변화를 조사하였다. 수분, 단백질, 지질, 탄수화물 등의 일반성분은 저장방법이나 저장기간에 따른 변화가 없었으며, 조섬유 함량은 냉동저장 시는 거의 변화가 없었으나 냉장저장 시는 저장기간이 길어짐에 다라 약간씩 감소하였다. 폴리페놀 함량은 냉장, 냉동저장에서 모두 증가하였으나 냉동저장의 경우 증가폭이 매우 컸다. 총 펙틴 함량은 저장기간이 연장에 따라 감소하였고 수용성 펙틴 함량은 증가하였는데 냉동저장인 경우는 그 증가나 감소 정도가 매우 적었다. 탄닌 함량은 냉동저장 시는 거의 변하지 않았으나 냉장 저장한 경우는 크게 감소하였다.

  • PDF

파이프라인이 매설된 폐쇄형 동결토의 동결심도 결정 (Determination of the Frozen Penetration Depth of a Freezing Soil Medium including a Pipeline in a Closed System)

  • 송원근
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.451-458
    • /
    • 2004
  • 본 연구는 동결토의 동결심도 및 매설된 파이프라인의 온도분포를 예측하기 위하여 유효열용량 개념 반영한 수치해석 모델의 개발에 초점이 맞추어져 있다. 이를 위하여 저자는 사용코드인 ANAQUS를 활용하여 파이프라인이 매설된 폐쇄형 시스템의 화강 동결토에 대하여 비정상 열전달 수치해석을 수행하였다. 제안된 수치해석 모델은 Frozen Fringe에서 간극수의 상변화 효과가 반영되었다. 제안된 수치해석 모델과 실내 실험으로부터 얻어진 결과들을 비교함으로써 유효열용량 모델의 적용성을 검증하였다.

동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구 (Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point)

  • 이준용;최창호
    • 한국지반환경공학회 논문집
    • /
    • 제14권7호
    • /
    • pp.19-29
    • /
    • 2013
  • 동토지역에서 지반의 역학적인 특징은 기존 토질역학이론과 다르기 때문에 동토지반 내 응력분포와 파괴조건을 묘사하기 위하여 기존 토질역학을 동토에 적용하는 것은 효과적이지 못하거나 적합하지 않다고 할 수 있다. 따라서, 동토지역에서 구조물의 설계 및 시공을 위해서는 동토역학에 관한 기술 자료의 수집 및 분석, 그리고 체계적이고 전문화된 연구가 필수적으로 요구된다. 극한지에서 나타나는 영구동토지역은 계절에 따라 활동층이 동결 융해를 반복하게 되며, 이에 따라 구조물에 영향을 끼치는 하중조건 또한 변화된다. 특히, 동토의 역학적인 성질들은 온도, 함수비, 입도분포, 상대밀도, 하중을 가하는 속도에 따라 민감하게 반응하기 때문에 동토지역 구조물 설계 및 시공에 있어 다양한 조건에 따른 동토의 역학적인 특징들을 신뢰성 있게 분석할 수 있는 방법이 필수적으로 요구된다. 본 연구에서는 동토의 전단강도 특성을 분석하기 위하여 영하 30도에서 작동 가능한 직접전단시험장비와 대형 냉동 챔버를 활용하였으며, 동결온도, 수직응력, 함수비 및 상대밀도를 달리하여 화강풍화토의 전단강도 특성을 분석하였다. 본 연구에 따르면 수직응력, 함수비 및 상대밀도는 동결온도 조건하에서 화강풍화토의 전단강도 특성에 영향을 끼치는 것으로 나타났다.