• Title/Summary/Keyword: Freezing performance

Search Result 266, Processing Time 0.024 seconds

Finite Element Analysis of Structural Performance of Anti-Freezing Layer via the Korea Pavement Research Program (한국형포장설계프로그램 및 유한요소해석을 이용한 동상방지층의 구조적 성능 평가)

  • Kim, Dowan;Lee, Junkyu;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • PURPOSES : Nowadays, cavity phenomena occur increasingly in pavement layers of downtown areas. This leads to an increment in the number of potholes, sinkholes, and other failure on the road. A loss of earth and sand from the pavement plays a key role in the occurrence of cavities, and, hence, a structural-performance evaluation of the pavement is essential. METHODS: The structural performance was evaluated via finite-element analysis using KPRP and KICTPAVE. KPRP was developed in order to formulate a Korean pavement design guide, which is based on a mechanical-empirical pavement design guide (M-EPDG). RESULTS: Installation of the anti-freezing layer yielded a fatigue crack, permanent deformation, and international roughness index (IRI) of 13%, 0.7 cm, and 3.0 m/km, respectively, as determined from the performance analysis conducted via KPRP. These values satisfy the design standards (fatigue crack: 20%, permanent deformation: 1.3 cm, IRI: 3.5 m/km). The results of FEM, using KICTPAVE, are shown in Figures 8~12 and Tables 3~5. CONCLUSIONS: The results of the performance analysis (conducted via KPRP) satisfy the design standards, even if the thickness of the anti-freezing layer is not considered. The corresponding values (i.e., 13%, 0.7 cm, and 3.0 m/km) are obtained for all conditions under which this layer is applied. Furthermore, the stress and strain on the interlayer between the sub-grade and the anti-freezing layer decrease gradually with increasing thickness of the anti-freezing layer. In contrast, the strain on the interlayer between the sub-base and the anti-freezing layer increases gradually with this increase in thickness.

A Study on Prediction of Road Freezing in Jeju (제주지역 도로결빙 예측에 관한 연구)

  • Lee, Young-Mi;Oh, Sang-Yul;Lee, Soo-Jeong
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.531-541
    • /
    • 2018
  • Road freezing caused by snowfall during wintertime causes traffic congestion and many accidents. To prevent such problems, we developed, in this study, a system to predict road freezing based on weather forecast data and the freezing generation modules. The weather forecast data were obtained from a high-resolution model with 1 km resolution for Jeju Island from 00:00 KST on December 1, 2017, to 23:00 KST on February 28, 2018. The results of the weather forecast data show that index of agreement (IOA) temperature was higher than 0.85 at all points, and that for wind speed was higher than 0.7 except in Seogwipo city. In order to evaluate the results of the freezing predictions, we used model evaluation metrics obtained from a confusion matrix. These metrics revealed that, the Imacho module showed good performance in precision and accuracy and that the Karlsson module showed good performance in specificity and FP rate. In particular, Cohen's kappa value was shown to be excellent for both modules, demonstrating that the algorithm is reliable. The superiority of both the modules shows that the new system can prevent traffic problems related to road freezing in the Jeju area during wintertime.

Effects of Pore Structure of Ground Granulated Blast-Furnace Slag Concrete on Freezing-Thawing Resistance (고로슬래그 미분말 콘크리트의 공극구조가 동결융해 저항성능에 미치는 영향)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Rae-Hwan;Shin, Kyoung-Su;Lee, Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.284-285
    • /
    • 2014
  • In this study, effects of pore structure of ground granulated blast-furnace slag concrete on freezing-thawing resistance are reviewed. As a result, degradation of freezing-thawing resistance performance was occurred as replacement ratio of ground granulated blast-furnace slag increases under same specified concrete strength condition. It is considered that pore structure of internal binder affects freezing-thawing resistance performance.

  • PDF

Thermal Conductivity Properties of Building Insulation Materials with Freezing and thawing Cycles (동결융해 반복에 따른 건축용 단열재의 열전도 특성)

  • Lee, Gun-Cheol;Choi, Jung-Gu;Lee, Gun-Young;Lim, Sun-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.190-191
    • /
    • 2014
  • The building insulation materials shall keep their thermal conductivity constant even when the freezing and thawing repeats for over a long time. But, in this condition of repeated freezing and thawing, the organic building insulation material may suffer the degradation in the thermal performance as the gas put into the insulation materials gets out slowly over a long time. Accordingly, in this study, the change in the thermal performance has been tested and evaluated when the repeated freezing and thawing cycles happen.

  • PDF

The design concept of the cubicle to improve freezing performance for high speed train (고속열차 배전반의 냉각성능 신뢰성 향상 방법에 대한 연구)

  • Choi, Kwon-Hee;Jeong, Byung-Ho;Lee, Byung-Seok;Park, Jong-Hun;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.905-910
    • /
    • 2007
  • The cubicle of high speed train is the equipment where the important train- operating equipments are concentrated, so it requires the higher safety and reliability than any other equipment. Recently, the power car cubicle of KTX-II is, basically similar to that of KTX-I and HSR350x in its size, but consequently, as more sophisticated ATP/ATC and other parts are added, the order company points out the problem of rising temperature in summer. Especially, the interpretation about the possibility of guaranteeing the minimum freezing performance becomes necessary, when Fan Tray is out of order. This paper presents the method of improving the freezing performance while minimizing the effect of dust, and the method of guaranteeing the present freezing performance by the best arrangement of Fan Tray, when Fan Tray is out of order. And as a method of verifying this, we would like to predict the pressure, speed of a running fluid and temperature distribution of cubicle through the flow analysis.

  • PDF

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

System Design and Performance Analysis of a Quick Freezer using Supercooling

  • Kim, Jinse;Chun, Ho Hyun;Park, Seokho;Choi, Dongsoo;Choi, Seung Ryul;Oh, Sungsik;Yoo, Seon Mi
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.330-335
    • /
    • 2014
  • Purpose: This study was conducted for enhancing the performance of a conventional quick freezer by introducing the supercooling state, using a low-temperature coolant. Methods: In the present investigation, the supercooling process was executed prior to quick freezing for reducing the time by which the temperature passes the zone of maximum ice crystal formation. Every food has different nucleation points and hence, we used silicone oil as the coolant for supercooling for easy modification of temperature. Additionally, for quick freezing, we used liquid nitrogen spray. Results: Using the heat exchanger-type precooler with silicone oil, the temperature of the chamber was easily changed for enabling supercooling. Particularly, the results of the freezing test with garlic indicated that this system improved the hardness of garlic after it was thawed, compared to the conventional freezing method. Conclusions: Before quick freezing, if the food item is subjected to the supercooling state, the time from nucleation to the temperature reaching the frozen state ($-5^{\circ}C$, which is the maximum ice crystal formation zone) will be shorter than that incurred using quick freezing alone. The combination of the heat exchanger-type supercooler and liquid nitrogen sprayer is expected to serve as a promising technology for improving the physicochemical qualities of frozen foods.

An Effect of Cold Environment on Human's Physiological Responses and Task Performances (저온 작업환경이 인간의 생리적 반응 및 작업 수행도에 미치는 영향)

  • Ku, Hak-Keun;Kwak, Hyo-Yean
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.622-629
    • /
    • 2007
  • Some worker is occupationally exposed to cold and freezing environment. The cold stimuli in the working environment impose physiological and psychological loads on workers to decrease the task performance. The purpose of this study is to investigate the cold stimuli of cold and freezing stores widely used in Busan can make an effect on human's physiological responses and task performance, experimentally and analytically. In the experiment, 5 workers are selected as subjects, and then their skin temperatures of hand and ear, heart rates, blood pressure, and ring test performances in cold($3^{\circ}C$) and freezing($-22^{\circ}C$) stores were measured for 21 minutes and analyzed by using statistical method. It is observed that a physiological variation and the task performance are significantly influenced by an exposure time as well as a strength of cold stimuli. Also, it is suggested the exposure limiting times for the useful manual work and the performance predict model of the ring tasks. The result of this study will be useful for a fundamental data of which design the standard task time of manual tasks and solve the job placement problem of worker selection and placement in cold environment.

Experimental Study on Freezing-Thawing and Warm-Moisture Resistance of FRP Composites used in Strengthening RC Members (FRP 복합체의 동결융해 및 고온.고습 저항성에 관한 실험 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.345-348
    • /
    • 2006
  • FRP composites which are used in strengthening existing structure are usually adhered to the concrete surface, their performance are directly affected by environmental condition such as freezing-thawing and moisture. Accordingly, it is required to evaluate bond durability between FRP composite and concrete as well as FRP materials itself. The durability characteristics of FRP composite for freezing-thawing are evaluated in this study with the variables of concrete strength, type of FRP composite, freezing-thawing conditions and freezing-thawing cycle. In addition, material durability of GFRP sheet for high temperature/high humidity condition are examined in this experimental study.

  • PDF

Fatigue Characteristics of Asphalt Concrete Based on compacted Density (아스팔트 콘크리트의 다짐도에 따른 피로 특성)

  • 김광우;이병덕;박용철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.205-210
    • /
    • 1994
  • This study was conducted to evaluate performance of asphalt concretes under various densities, using Marshall specimens before and after freezing-and-thawing treatment. Six different compaction blows per side (20, 30, 40, 50, 60, 70 blows) were applied to specimens to produce different densities. Test results showed that the lower density specimens had the weaker resistance to freezing-and-thawing treatment. The density was an index of retaining fatigue life and displacement after freezing-and-thawing. Therefore, poor compaction in pavement was considered to be a major cause of early distress mechanisms such as rutting, ravelling and cracking, which were resulted in a reduced service life.

  • PDF