• Title/Summary/Keyword: Freezing of water

Search Result 718, Processing Time 0.029 seconds

A Study on Anti-Icing Design by Conjugate Heat Transfer Analysis in a Lab-Scale Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen (극저온 고압액체수소 공급을 위한 실험실 규모 인쇄기판 열교환기의 복합열전달 해석을 통한 방빙설계에 관한 연구)

  • SOHN, SANGHO;KIM, WOOKYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.541-549
    • /
    • 2022
  • This study investigates anti-icing design by conjugate heat transfer analysis in lab-scale printed circuit heat exchanger (PCHE) for supply of cryogenic high pressure liquid hydrogen. The conjugate heat transfer analysis by using computational dynamics (CFD) provided various temperature distributions at important locations in PCHE heat exchanger and predicted the possibility of freezing in hot channel. And, the effect of inlet temperature of glycol water was analyzed in order to resolve the freezing problem in PCHE.

The Effect of Freezing and Filter Cake Drying Process on the Preparation of Ba-Ferrite by Coprecipitation (동결 및 Filter Cake 건조과정이 공침법에 의한 Ba-ferrite제조에 미치는 영향)

  • 이병우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.100-106
    • /
    • 1991
  • Ba.Fe - hydroxide precipitates were obtained by the variation of pH levelsm, which process was based on the calculated solubility from the solubility product(Ksp). Single phase $BaFe_12O_19$ was synthesized above $790^{\circ}C$. The 98% of theoretical density was obtained in the specimens formed from the filter cake drying and the hand pressing at temperatures $95^{\circ}C$ and $1,100^{\circ}C$ for 2hrs, respectively. The feezing of colloidal coprecipitate suspension formed powders up to several tens of micron size, which led to reduce the filtration time and the consumption of distilled water.

  • PDF

Analyzing the Effects of MEA Designs on Cold Start Behaviors of Automotive Polymer Electrolyte Fuel Cell Stacks (자동차용 고분자전해질형연료전지 스택에서의 막-전극접합체 설계인자가 저온시동에 미치는 영향성 연구)

  • Gwak, Geon-Hui;Ko, Jo-Han;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • This paper presents a three-dimensional, transient cold-start polymer electrolyte fuel cell (PEFC) model to numerically evaluate the effects of membrane electrode assembly (MEA) design and cell location in a PEFC stack on PEFC cold start behaviors. The cold-start simulations show that the end cell experiences significant heat loss to the sub-freezing ambient and thus finally cold-start failure due to considerable ice filling in the cathode catalyst layer. On the other hand, the middle cells in the stack successfully start from $-30^{\circ}C$ sub-freezing temperature due to rapid cell temperature rise owing to the efficient use of waste heat generated during the cold-start. In addition, the simulation results clearly indicate that the cathode catalyst layer (CL) composition and thickness have an substantial influence on PEFC cold-start behaviors while membrane thickness has limited effect mainly due to inefficient water absorption and transport capability at subzero temperatures.

Effect of supercooling on the cooling in horizontal cylindrical annuli (이중원관의 냉각과정에 미치는 과냉각의 영향)

  • Yun, Jeong-In;Kim, Jae-Dol;Kato, Toyofumi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3313-3321
    • /
    • 1996
  • A fundamental study in cooling and solidification process focused on ice storage was performed, including the interesting phenomena of density inversion, supercooling and dendritic ice. A numerical study was performed for natural convection and ice formation in the cooling and freezing processes with supercooling in a space between double cylinders. When water was cooled under the freezing point by a cooling wall in a cavity, solidification was not started at once, but a subcooled region was formed near the wall. Especially, when the cooling rate was low, subcooled region extended to a wide area. However, after a few minutes, supercooling is released by some triggers. Dendritic ice is suddenly formed within a subcooled region, and a dense ice layer begins to be developed from the cooling wall. Due to the difficulties, most previous studies on solidification process with numerical methods had not treated the supercooling phenomena, i.e. the case considering only the growth of dense ice. In this study, natural convection and ice formation considering existence of supercooling and dendritic ice were analyzed numerically with using finite difference method and boundary fixing method. The results of numerical analysis were well compared with the experimental results.

An Experimental Study on Frost Heaving Pressure Characteristics of Frozen Soils (동결토의 동상팽창압 특성에 관한 실험적 연구)

  • 신은철;박정준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • Most of land reclamation projects are being implemented along the south and west coastal lines of the Korean Peninsula. The earth structures and in-ground LNG tank, and buildings can be constructed using artificial freezing method on the reclaimed land to control the uplift pressure caused by capillary forces. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable frost heaving pressure was developed. Decomposed granite soils, silty soil, and sandy soil were used in the laboratory freeze test which is sometimes subjected to thermal gradients under closed-systems. A major concern has been the ability to predict the frost heaving pressure over the results of relatively short-term laboratory tests. The frost heaving pressure arising within the soil samples and the temperature of the samples inside were monitored with time elapse. The degree of saturation versus heaving pressure curve is presented for each soil sample and the maximum pressure is closely related to this curve. TDR apparatus was used to measure the volumetric water content by the measurement of unfrozen water contents of frozen soils. Unfrozen water increased in soils containing a high percentage of fine-grained particles. In fine-grained soils with strong attractive farces between soil grains and water molecules, additional water is attracted into the pores leading to further volume changes and ice segregation.

Appearance Characteristic of Waterbirds in Banseok Ecological Stream (생태하천으로 조성된 반석천의 물새류 출현특성)

  • Park, Seungki;Na, Sangsoo;Park, Daesoon;Han, Jaebong
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • This study was conducted as a basic research to create a sound and vital ecological environment in the city compared to the appearance characteristics of Gap stream(G-stream), which are the main stream of Banseok stream(B-stream), by analyzing the characteristics of waterbirds, including Wild Spot-billed Duck (S-Duck), that live in B-stream built as ecological stream. The waterbird survey was conducted by the line census for 3.2km, Jukdong-bridge to Jamiseon-bridge, from January to August 2018. The analysis of the survey was conducted with Relative species density(RD) of the emerging waterbird species, the Species diversity and Density Per Unit area for 100㎡(DPU). The waterbird survey results of B-stream was conducted 65 times. The five types of water birds that appeared during the survey were Spot-billed Duck(Anas poecilorhyncha), Teal(Anas crecca), Little Egret(Egretta garzetta), Great Egret(Egretta alba), and Grey Heron(Ardea cinerea). As a result, for S-Duck at B-stream, RD was 89.9%, monthly species diversity was simple as 0.3801 in January, 0.5943 in February and 0.3501 in August. The DPU of the S-Duck was 0.165/100㎡ in the B-Stream survey section which was 4.9 times higher than the main stream section, G-stream. The non-freezing zone of the city's small stream is expected to play an important role as a winter stop for wild birds such as S-Duck during the freezing period of the huge stream. For this reason, considering the ecological characteristics of wild waterbirds such as S-Duck when creating ecological stream, a: space and linear selection of waterways which can minimize the impact of natural enemy and increasing the number of walkers, b: management water-friendly plants in the low flow channel, c: arrangement walking-bicycle road will be necessary.

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF

The Application of Abelmoschus manihot jinhuakui Extracts as Cosmetic Ingredient (금화규(Abelmoschus manihot jinhuakui) 추출물의 화장품 소재로서의 응용)

  • Jeon, Yun-Hong;Kang, Sang-Mo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.290-297
    • /
    • 2020
  • This study focuses on figuring out the possibility of cosmetics raw materials, especially the A. manihot jinhuakui, The viscosity of the frozen-dried extracts were all increased according to the added concentration, and the high viscosity of the WF extracted with water-based alkaline solvent was confirmed. We used snail mucus to compare the viscosity of the A. manihot jinhuakui. We generated the emulsions of experimental groups with 10% of freezing and drying A. manihot jinhuakui and control group emulsions with 10% of freezing and drying snail mucus. By the results, it shows that the WF experimental group had the highest incremental viscosity rates as 129,200 cPs. In the elastic changes and moisture measurement of the skin, the A. manihot jinhuakui extracts growth rate was the highest more than snail mucus. It demonstrated the possibility of cosmetics raw materials in A. manihot jinhuakui, which takes into account the properties of natural products.

Durability of High-fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 고유동 폴리머 시멘트 모르타르의 내구성)

  • Joo Myung-Ki;Lee Youn-Su;Youn Do-Yong;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.703-708
    • /
    • 2005
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As the result, the setting time of the polymer-modified mortars using redispersible polymer powder tends to be delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption, chloride ion penetration depth and carbonation depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder