DOI QR코드

DOI QR Code

A Study on Anti-Icing Design by Conjugate Heat Transfer Analysis in a Lab-Scale Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen

극저온 고압액체수소 공급을 위한 실험실 규모 인쇄기판 열교환기의 복합열전달 해석을 통한 방빙설계에 관한 연구

  • SOHN, SANGHO (Department of Thermal Energy Solution, Innovative Energy Machinery Research Division, Korea Institute of Machinery and Materials) ;
  • KIM, WOOKYOUNG (Department of Thermal Energy Solution, Innovative Energy Machinery Research Division, Korea Institute of Machinery and Materials)
  • 손상호 (한국기계연구원 고효율에너지기계연구부 열에너지솔루션연구실) ;
  • 김우경 (한국기계연구원 고효율에너지기계연구부 열에너지솔루션연구실)
  • Received : 2022.10.03
  • Accepted : 2022.10.25
  • Published : 2022.10.30

Abstract

This study investigates anti-icing design by conjugate heat transfer analysis in lab-scale printed circuit heat exchanger (PCHE) for supply of cryogenic high pressure liquid hydrogen. The conjugate heat transfer analysis by using computational dynamics (CFD) provided various temperature distributions at important locations in PCHE heat exchanger and predicted the possibility of freezing in hot channel. And, the effect of inlet temperature of glycol water was analyzed in order to resolve the freezing problem in PCHE.

Keywords

Acknowledgement

본 연구는 2022년 한국기계연구원 기본사업인 '액체수소 공급시스템 핵심 기자재 개발(NK237B)'의 지원으로 연구한 결과물입니다.

References

  1. 1 O. Wilhelmsen, D. Berstad, A. Aasen, P. Neksa, and G. Skaugen, "Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes", Int. J. Hydrogen Energy, Vol. 43, No. 10, 2018, pp. 5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.
  2. T. Kim, B. I. Choi, Y. S. Han, and K. H. Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pilot plant with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.
  3. J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E. W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, pp. 721-748, doi: https://doi.org/10.1063/1.3160306.
  4. P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic orthopara hydrogen conversion during liquefaction", Chem. Eng. Technol., Vol. 42, No. 3, 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.
  5. B. Sun, D. Wadnerkar, R. P. Utikar, M. Tade, N. Kavanagh, S. Faka, G. M. Evans, and V. K. Pareek, "Modeling of cryogenic liquefied natural gas ambient air vaporizers", Ind. Eng. Chem. Res., Vol. 57, No. 28, 2018, pp. 9281-9291, doi: https://doi.org/10.1021/acs.iecr.8b01226.
  6. M. Ichard, Q. R. Hansen, P. Middha, and D. Willoughby, "CFD computations of liquid hydrogen releases", Int. J. Hydrogen Energy, Vol. 37, No. 22, 2012, pp. 17380-17389, doi: https://doi.org/10.1016/j.ijhydene.2012.05.145.
  7. D. C. Lee, A. Handry, H. S. Chung, and H. M. Jeong, "Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship", Journal of the Korean Society of Marine Engineering, Vol. 37, No. 1, 2013, pp. 22-28, doi: https://doi.org/10.5916/jkosme.2013.37.1.22.
  8. F. Huerta and V. Vesovic, "CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks", Int. J. Heat and Mass Transfer, Vol. 176, 2021, pp. 121419, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121419.
  9. S. Baek, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 79, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.
  10. D. Popov, K. Fikiin, B. Stankov, G. Alvarez, M. YoubiIdrissi, A. Damas, J. Evans, and T. Brown, "Cryogenic heat exchangers for process cooling and renewable energy storage: a review", App. Thermal Eng, Vol. 153, 2019, pp. 275-290, doi: https://doi.org/10.1016/j.applthermaleng.2019.02.106.
  11. S. Sohn and B. I. Choi, "A study on thermal design of printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 347-355, doi: https://doi.org/10.7316/KHNES.2021.32.5.347.
  12. ASTM, "Standard test method for freezing point of aqueous engine coolants", ASTM D117717, 2017. Retrieved from https://www.astm.org/Standards/D1177.htm.
  13. ANSYS, "Fluent theory manual", 2013.
  14. SAE, "Fueling protocols for light duty gaseous hydrogen surface vehicles J2601_202005", SAE MOBILUS, 2020. Retrieved from https://www.sae.org/standards/content/j2601_202005/.