Acknowledgement
본 연구는 2022년 한국기계연구원 기본사업인 '액체수소 공급시스템 핵심 기자재 개발(NK237B)'의 지원으로 연구한 결과물입니다.
References
- 1 O. Wilhelmsen, D. Berstad, A. Aasen, P. Neksa, and G. Skaugen, "Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes", Int. J. Hydrogen Energy, Vol. 43, No. 10, 2018, pp. 5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.
- T. Kim, B. I. Choi, Y. S. Han, and K. H. Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pilot plant with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.
- J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E. W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, pp. 721-748, doi: https://doi.org/10.1063/1.3160306.
- P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic orthopara hydrogen conversion during liquefaction", Chem. Eng. Technol., Vol. 42, No. 3, 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.
- B. Sun, D. Wadnerkar, R. P. Utikar, M. Tade, N. Kavanagh, S. Faka, G. M. Evans, and V. K. Pareek, "Modeling of cryogenic liquefied natural gas ambient air vaporizers", Ind. Eng. Chem. Res., Vol. 57, No. 28, 2018, pp. 9281-9291, doi: https://doi.org/10.1021/acs.iecr.8b01226.
- M. Ichard, Q. R. Hansen, P. Middha, and D. Willoughby, "CFD computations of liquid hydrogen releases", Int. J. Hydrogen Energy, Vol. 37, No. 22, 2012, pp. 17380-17389, doi: https://doi.org/10.1016/j.ijhydene.2012.05.145.
- D. C. Lee, A. Handry, H. S. Chung, and H. M. Jeong, "Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship", Journal of the Korean Society of Marine Engineering, Vol. 37, No. 1, 2013, pp. 22-28, doi: https://doi.org/10.5916/jkosme.2013.37.1.22.
- F. Huerta and V. Vesovic, "CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks", Int. J. Heat and Mass Transfer, Vol. 176, 2021, pp. 121419, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121419.
- S. Baek, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 79, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.
- D. Popov, K. Fikiin, B. Stankov, G. Alvarez, M. YoubiIdrissi, A. Damas, J. Evans, and T. Brown, "Cryogenic heat exchangers for process cooling and renewable energy storage: a review", App. Thermal Eng, Vol. 153, 2019, pp. 275-290, doi: https://doi.org/10.1016/j.applthermaleng.2019.02.106.
- S. Sohn and B. I. Choi, "A study on thermal design of printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 347-355, doi: https://doi.org/10.7316/KHNES.2021.32.5.347.
- ASTM, "Standard test method for freezing point of aqueous engine coolants", ASTM D117717, 2017. Retrieved from https://www.astm.org/Standards/D1177.htm.
- ANSYS, "Fluent theory manual", 2013.
- SAE, "Fueling protocols for light duty gaseous hydrogen surface vehicles J2601_202005", SAE MOBILUS, 2020. Retrieved from https://www.sae.org/standards/content/j2601_202005/.