• Title/Summary/Keyword: Freeze simulation

Search Result 29, Processing Time 0.022 seconds

Probabilistic Prediction Model for the Cyclic Freeze-Thaw Deteriorations in Concrete Structures (콘크리트 구조물의 반복적 동결융해에 의한 확률론적 열화예측모델)

  • Cho, Tae-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.957-960
    • /
    • 2006
  • In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the Response Surface Method (RSM) is used. RSM has merits when the other probabilistic simulation techniques can not guarantee the convergence of probability of occurrence or when the others can not differentiate the derivative terms of limit state functions, which are composed of random design variables in the model of complex system or the system having higher reliability. For composing limit state function, the important parameters for cyclic freeze-thaw-deterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used as input parameters of RSM. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw for specimens show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages by the cyclic freeze-thaw by the use of proposed prediction method.

  • PDF

A Numerical Analysis on the Freeze Coating of a Non-Isothermal Flat Plate with a Binary Alloy (비등온 평판의 이성분 합금 냉각코팅에 관한 수치해석)

  • Nam, Jin-Hyeon;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1437-1446
    • /
    • 2000
  • A numerical analysis on the freeze coating process of a non-isothermal finite dimensional plate with a binary alloy is performed to investigate the growth and decay behavior of the solid and the mushy layer of the freeze coat and a complete procedure to calculate the process is obtained in this study. The continuously varying solid and mushy layers are immobilized by a coordinate transform and the resulting governing differential equations are solved by a finite difference technique. To account for the latent heat release and property change during solidification, proper phase change models are adopted. And the convection in the liquid melt is modeled as an appropriate heat transfer boundary condition at the liquid/mushy interface. The present results are compared with analytic solutions derived for the freeze coating of infinite dimensional plates and the discrepancy is found to be less than 0.5 percent in relative magnitude for all simulation cases. In addition the conservation of thermal energy is checked. The results show that the freeze coat grows proportional to the 1.2 square of axial position as predicted by analytic solutions ar first. But after the short period of initial growth, the growth rate of the freeze coat gradually decreases and finally the freeze coat starts to decay. The effects of various non-dimensional processing parameters on the behavior of freeze coat are also investigated.

A Characteristic of Freeze and Thaw on Use for Stabilized Soil in Landfill Bottom Liners (매립지 바닥층의 고화토 포설시 동결/융해의 특성)

  • Kim, Heung-Seok;Lee, Song;Lee, Jai-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Recently, Korea brings to remarkable levels about industrialization, modernization, population and development of technology. Especially, the rapidly growing from this technology has increased the burden on existing industrial waste landfills. The purpose of this research is to existing knowledge base of landfill cover liner behavior during periods freeze/thaw. Although these tests have been invaluable in clarifying the problem of freeze/thaw, extending the results of such experimental studies to prototype landfills are questionable. For this investigation, the author utilized a large scale laboratory simulation allowing inclusion of the field depth of the cover systems, layered soil profiles, rainfall simulation, a cold climate and boundary conditions similar to those encountered in the landfill. And the soil materials used stabilized soils (mixed clays, cements, and minerals) instead of clays. The bottom liners are made up of drainage layer (30cm), stabilized layer (75cm), and leach collection layer (60cm). The stabilized layers are made up of supporting layer (45cm) and impermeable layer (30cm) - consisted of $P_A$ and $P_B$ layer.

  • PDF

Performance Comparison of Synchronization Methods for CC-NUMA Systems (CC-NUMA 시스템에서의 동기화 기법에 대한 성능 비교)

  • Moon, Eui-Sun;Jhang, Seong-Tae;Jhon, Chu-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.4
    • /
    • pp.394-400
    • /
    • 2000
  • The main goal of synchronization is to guarantee exclusive access to shared data and critical sections, and then it makes parallel programs work correctly and reliably. Exclusive access restricts parallelism of parallel programs, therefor efficient synchronization is essential to achieve high performance in shared-memory parallel programs. Many techniques are devised for efficient synchronization, which utilize features of systems and applications. This paper shows the simulation results that existing synchronization methods have inefficiency under CC-NUMA(Cache Coherent Non-Uniform Memory Access) system, and then compares the performance of Freeze&Melt synchronization that can remove the inefficiency. The simulation results present that Test-and-Test&Set synchronization has inefficiency caused by broadcast operation and the pre-defined order of Queue-On-Lock-Bit (QOLB) synchronization to execute a critical section causes inefficiency. Freeze&Melt synchronization, which removes these inefficiencies, has performance gain by decreasing the waiting time to execute a critical section and the execution time of a critical section, and by reducing the traffic between clusters.

  • PDF

Performance Enhancement for Vertical Handover in Heterogeneous Wireless Networks Using Freeze DeadLine (이기종 무선망 환경에서 Freeze DeadLine 기법을 통한 수직 핸드오버의 성능개선)

  • Jeong, Hyeon-Jin;Choi, Seung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.8
    • /
    • pp.499-509
    • /
    • 2014
  • In this paper, we propose that a FDL(Freeze DeadLine) Algorithm to solve handover problems in heterogeneous wireless networks. Many previous studies concentrated on low level layer to solve handover problems. In this paper, however, we concentrate on high level handover problems such as network layer and transport layer. We analyze handover's problems of transport layer in Heterogeneous wireless network, propose the FLD algorithm for better performance than others studies. The Proposed method is analyzed by theoretical frames and we verify that the propose method using the NS-2(Network Simulation - 2).

Design of Replacement Method on Anti-freeze Process of L Type Retaining Wells (L형 옹벽의 동상대책에 있어서 치환공법의 설계)

  • Rui, Da-Hu;Kim, Young-Su;Suzuki, Teruyuki
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.19-27
    • /
    • 2009
  • In order to investigate anti-freeze process of precast concrete L-type retaining walls in cold regions, test walls were installed in the campus of Kitami Institute of Technology (KIT, Hokkaido, Japan). The wall consists of following three sections, i) back filled with frost susceptible clay soil, ii) using thermal insulation material, and back filled with frost susceptible soil, iii) back filled with frost-unsusceptible soil. The freezing front distribution and ground temperature within the backfill were observed and deflections of the walls were measured over three freeze-thaw seasons. Some understanding of the mechanisms of the build-up of frost heave pressure was gained, and the effectiveness of replacement method was observed. A simulation was performed to predict the shape of the freezing front in the backfill behind L-type walls with various cross sections. These findings were employed to propose a method for determining the appropriate zone to be replaced with frost unsusceptible backfill material in cold regions.

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.

SACK-SNOOP Protocol for Wireless TCP Performance Improvement (무선 TCP 성능 향상을 위한 SACK-SNOOP 프로토콜)

  • Ahn, Chi-Hyun;Kim, Hyung-Chul;Woo, Jong-Jung;Kim, Jang-Hyung;Lee, Dae-Young;Jun, Kye-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.392-401
    • /
    • 2007
  • Wireless network has high BER characteristic because of path loss, fading, noise and interference. Many packet losses occur without any congestion in wireless network. Therefore, many wireless TCP algorithms have been proposed. SNOOP, one of wireless TCP algorithms, hides packet losses for Fixed Host and retransmits lost packets in wireless network. However, SNOOP has a weakness for bust errors in wireless network. This paper proposes the SACK-SNOOP to improve TCP performance based on SNOOP and Freeze-TCP that use ZWA messages in wireless network. This message makes FH stop sending packets to MH. BS could retransmit error packets to MH for this time. SACK-SNOOP use improved Selective ACK, thereby reducing the number of packet sequences according to error environment. This method reduces the processing time for generation, transmission, analysis of ACK. This time gain is enough to retransmit local burst errors in wireless link. Furthermore, SACK-SNOOP can manage the retransmitted error by extending delay time to FH. The simulation shows that our proposed protocol is more effective for packet losses in wireless networks.

An Efficient Transport Protocol for Ad Hoc Networks: An End-to-End Freeze TCP with Timestamps

  • Cho, Sung-Rae;Sirisena, Harsha;Pawlikowski, Krzysztof
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.376-386
    • /
    • 2004
  • In ad hoc networks, loss-based congestion window progression by the traditional means of duplicate ACKs and timeouts causes high network buffer utilization due to large bursts of data, thereby degrading network bandwidth utilization. Moreover, network-oriented feedbacks to handle route disconnection events may impair packet forwarding capability by adding to MAC layer congestion and also dissipate considerable network resources at reluctant intermediate nodes. Here, we propose a new TCP scheme that does not require the participation of intermediate nodes. It is a purely end-to-end scheme using TCP timestamps to deduce link conditions. It also eliminates spurious reductions of the transmission window in cases of timeouts and fast retransmits. The scheme incorporates a receiver-oriented rate controller (rater), and a congestion window delimiter for the 802.11 MAC protocol. In addition, the transient nature of medium availability due to medium contention during the connection time is addressed by a freezing timer (freezer) at the receiver, which freezes the sender whenever heavy contention is perceived. Finally, the sender-end is modified to comply with the receiver-end enhancements, as an optional deployment. Simulation studies show that our modification of TCP for ad hoc networks offers outstanding performance in terms of goodput, as well as throughput.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF